
Data Mapper
(a.k.a SQL Maps)

Version 2.0

Developer Guide

November 30, 2006

Developer Guide iBATIS Data Mapper 2.0

Table of Contents
 ... 3
Introduction...4
Data Mapper... 4
Installation.. 5

Upgrading from 1.x...5
The SQL Map XML Configuration File ..8

The <properties> Element...9
The <settings> Element...9
The <resultObjectFactory> Element...12
The <typeAlias> Element... 13
The <transactionManager> Element... 13
The <dataSource> Element...14
The <sqlMap> Element...17

The SQL Map XML File ... 18
Mapped Statements...19

Statement Types.. 19
The SQL..21
Reusing SQL Fragments... 21
Auto-Generated Keys..22
Stored Procedures... 23

Parameter Maps and Inline Parameters.. 28
Inline Parameter Maps.. 30
Primitive Type Parameters..32
Map Type Parameters... 32

Substitution Strings...33
Result Maps.. 33

Implicit Result Maps... 36
Primitive Results... 36
Complex Properties ..37
Avoiding N+1 Selects (1:1).. 38
Complex Collection Properties .. 39
Avoiding N+1 Selects (1:M and M:N)..40
Composite Keys or Multiple Complex Parameters Properties ...41

Supported Types for Parameter Maps and Result Maps...43
Creating custom Type Handlers..44

Caching Mapped Statement Results... 45
Read-Only vs. Read/Write.. 45
Serializable Read/Write Caches..45
Cache Types..46

Dynamic Mapped Statements... 49
Dynamic Element..50
Binary Conditional Elements.. 50
Unary Conditional Elements .. 51
Other Elements..52

Simple Dynamic SQL Elements... 54
Programming with Data Mapper: The API..55

Configuration.. 55
Transactions.. 55
Multi Threaded Programming...58
iBATIS Classloading.. 58
Batches.. 59
Executing Statements via the SqlMapClient API..60

Logging SqlMap Activity... 65
The One Page JavaBeans Course... 67
Resources (com.ibatis.common.resources.*) ...69

http://ibatis.apache.org by Clinton Begin

2

Developer Guide iBATIS Data Mapper 2.0

Internationalization of Resources..69
SimpleDataSource (com.ibatis.common.jdbc.*)...71

http://ibatis.apache.org by Clinton Begin

3

Developer Guide iBATIS Data Mapper 2.0

Introduction

The iBATIS Data Mapper framework will help you to significantly reduce the amount of Java code that you
normally need to access a relational database. iBATIS simply maps JavaBeans to SQL statements using a
very simple XML descriptor. Simplicity is the key advantage of iBATIS over other frameworks and object
relational mapping tools. To use the iBATIS Data Mapper you need only be familiar with JavaBeans, XML
and SQL. There is very little else to learn. There is no complex scheme required to join tables or execute
complex queries. Using Data Mapper you have the full power of real SQL at your fingertips.

Data Mapper (com.ibatis.sqlmap.*)
Concept

The iBATIS Data Mapper API allows programmers to easily map JavaBeans objects to PreparedStatement
parameters and ResultSets. The philosophy behind Data Mapper is simple: provide a simple framework to
provide 80% of JDBC functionality using only 20% of the code.

How does it work?

Data Mapper provides a very simple framework for using XML descriptors to map JavaBeans, Map
implementations, primitive wrapper types (String, Integer…) and even XML documents to an SQL
statement. The following is a high level description of the lifecycle:

1. Provide an object as a parameter (either a JavaBean, Map or primitive wrapper). The
parameter object will be used to set input values in an update statement, or where clause values
in a query, ...

2. Execute the mapped statement. This step is where the magic happens. The Data Mapper
framework will create a PreparedStatement instance, set any parameters using the provided
parameter object, execute the statement and build a result object from the ResultSet.

3. In the case of an update, the number of rows effected is returned. In the case of a query, a
single object, or a collection of objects is returned. Like parameters, result objects can be a
JavaBean, a Map, a primitive type wrapper or XML.

The diagram below illustrates the flow as described.

http://ibatis.apache.org by Clinton Begin

4

JDBC

Parameter Object
(Input)

Map
(HashMap,
TreeMap…)

Result Object
(Output)

“Primitive”
(Integer,
String…)

Map
(HashMap,
TreeMap…)

JavaBean

SQL Map

Mapped
Statemen

Mapped
Statemen

Mapped
Statemen

Mapped
Statemen

Mapped
Statemen

Mapped
Statemen

Mapped
Statemen

Mapped
Statemen

Mapped
Statemen

XML

“Primitive”
(Integer,
String…)

SqlMapConfig.xmlSqlMap.
xml

SqlMap.
xml

JavaBean

XML

Developer Guide iBATIS Data Mapper 2.0

Installation

Installing the iBATIS Data Mapper framework is simply a matter of placing the appropriate JAR files on
the classpath. This can either be the classpath specified at JVM startup time (java -cp argument), or it could
be the /WEB-INF/lib directory of a web application. A full discussion of the Java classpath is beyond the
scope of this document. If you’re new to Java and/or the classpath, please refer to the following resources:

http://java.sun.com/j2se/1.4/docs/tooldocs/win32/classpath.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ClassLoader.html
http://java.sun.com/j2se/1.4.2/docs/

iBATIS is delivered in a single JAR file. The file name is in this form:

ibatis-version.build.jar

For example, ibatis-2.3.0.677.jar.

Generally, placing this single JAR file on your application's class path is enough.

JAR Files and Dependencies

When a framework has too many dependencies, it makes it difficult to integrate into an application and with
other frameworks. One of the key focus points of 2.0 was dependency management and reduction.
Therefore, if you're running JDK 1.4, then iBATIS has no other dependencies. The optional JAR file
libraries can be downloaded from the websites below. They are categorized by function. The following is a
summary of when you would need to use the optional packages.

Description When to Use Dependency
Legacy JDK
Support

If you're running less than JDK
1.4 and if your app server also
doesn't already supply these
JARs, then you will need these
optional packages.

JDBC 2.0 Extensions
http://java.sun.com/products/jdbc/download.html
JTA 1.0.1a
http://java.sun.com/products/jta/
Xerces 2.4.0
http://xml.apache.org/xerces2-j/

iBATIS Backward
Compatibility

If you’re using the old iBATIS
(1.x) DAO framework, or the
old Data Mapper (1.x) you can
continue to do so by simply
including the JAR files in this
directory.

iBATIS DAO 1.3.1
http://sourceforge.net/projects/ibatisdb/

Runtime
Bytecode
Enhancement

If you want to enable CGLIB
2.0 bytecode enhancement to
improve lazy loading and
reflection performance.

CGLIB 2.0
http://cglib.sf.net

DataSource
Implementation

If you want to use the Jakarta
DBCP connection pool.

DBCP 1.1
http://jakarta.apache.org/commons/dbcp/

Distributed
Caching

If you want to use OSCache
for centralized or distributed
caching support.

OSCache 2.0.1
http://www.opensymphony.com/oscache/

Logging Solution If you want to use Log4J
logging.

Log4J 1.2.8
http://logging.apache.org/log4j/docs/

Logging Solution If you want to use Jakarta
Commons Logging

Jakarta Commons Logging
http://jakarta.apache.org/commons/logging

Upgrading from 1.x

Should you Upgrade?

http://ibatis.apache.org by Clinton Begin

5

http://java.sun.com/j2se/1.4/docs/tooldocs/win32/classpath.html
http://java.sun.com/j2se/1.4.2/docs/
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ClassLoader.html

Developer Guide iBATIS Data Mapper 2.0

The best way to determine if you should upgrade is to try it. There are a few upgrade paths.

1. Version 2.0 has maintained nearly complete backward compatibility with the 1.x releases, so for
some people simply replacing the JAR files might be enough. This approach yields the fewest
benefits, but is also the simplest. You don’t need to change your XML files or your Java code.
Some incompatibilities may be found though.

2. The second option is to convert your XML files to the 2.0 specification, but continue using the 1.x
Java API. This is a safe solution in that fewer compatibility issues will occur between the mapping
files (there are a few). An Ant task is included with the framework to convert your XML files for
you (described below).

3. The third option is to convert your XML files (as in #2) and your Java code. There is no tool for
converting Java code, and therefore it must be done by hand.

4. The final option is to not upgrade at all. If you have difficulty, don’t be afraid to leave your
working systems on the 1.x release. It’s probably not a bad idea to leave your old applications on
1.x and start only new applications on 2.0. Of course, if an old application is being heavily
refactored beyond the point of recognition anyway, you might as well upgrade Data Mapper too.

Converting XML Configuration Files from 1.x to 2.x

The 2.0 framework includes an XML document converter that runs via the Ant build system. Converting
your XML documents is completely optional as 1.x code will automatically transform old XML files on the
fly. Still, it’s a good idea to convert your files once you’re comfortable with the idea of upgrading. You
will experience fewer compatibility issues and you’ll be able to take advantage of some of the new features
(even if you’re still using the 1.x Java API).

The Ant task looks like this in your build.xml file:

 <taskdef name="convertSqlMaps"
 classname="com.ibatis.db.sqlmap.upgrade.ConvertTask"
 classpathref="classpath"/>

 <target name="convert">
 <convertSqlMaps todir="D:/targetDirectory/" overwrite="true">
 <fileset dir="D/sourceDirectory/">
 <include name="**/maps/*.xml"/>
 </fileset>
 </convertSqlMaps>
 </target>

As you can see, it works exactly like the Ant copy task, and in fact it extends the Ant copy task, so you can
really do anything with this task that Copy can do (see the Ant Copy task documentation for details).

http://ibatis.apache.org by Clinton Begin

6

Developer Guide iBATIS Data Mapper 2.0

JAR Files: Out with the Old, In with the New

When upgrading, it's a good idea to remove all existing (old) iBATIS files and dependencies, and replace
them with the new files. Be sure not to remove any that your other components or frameworks might still
need. Note that most of the JAR files are optional depending on your circumstances. Please see the
discussion above for more information about JAR files and dependencies.

The following table summarizes the old files and the new ones.

Old Files New Files

ibatis-db.jar

After release 1.2.9b, this file was split into the
following 3 files

ibatis-common.jar
ibatis-dao.jar
ibatis-sqlmap.jar

Ibatis-version.build.jar (required)

commons-logging.jar
commons-logging-api.jar
commons-collections.jar
commons-dbcp.jar
commons-pool.jar
oscache.jar
jta.jar
jdbc2_0-stdext.jar
xercesImpl.jar
xmlParserAPIs.jar
jdom.jar

commons-logging-1-0-3.jar (optional)
commons-collections-2-1.jar (optional)
commons-dbcp-1-1.jar (optional)
commons-pool-1-1.jar (optional)
oscache-2-0-1.jar (optional)
jta-1-0-1a.jar (optional)
jdbc2_0-stdext.jar (optional)
xercesImpl-2-4-0.jar (optional)
xmlParserAPIs-2-4-0.jar (optional)
xalan-2-5-2.jar (optional)
log4j-1.2.8.jar (optional)
cglib-full-2-0-rc2.jar (optional)

The rest of the guide will introduce you to using the Data Mapper framework.

http://ibatis.apache.org by Clinton Begin

7

Developer Guide iBATIS Data Mapper 2.0

The SQL Map XML Configuration File
(http://ibatis.apache.org/dtd/sql-map-config-2.dtd)

Data Mapper is configured using a central XML configuration file, which provides configuration details for
DataSources, Data Mapper and other options like thread management.. The following is an example of the
SQL Map configuration file:

SqlMapConfig.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMapConfig
 PUBLIC "-//ibatis.apache.org//DTD SQL Map Config 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-config-2.dtd">

<!-- Always ensure to use the correct XML header as above! -->
<sqlMapConfig>

 <!-- The properties (name=value) in the file specified here can be used placeholders in this config
 file (e.g. “${driver}”. The file is relative to the classpath and is completely optional. -->
 <properties resource=" examples/sqlmap/maps/SqlMapConfigExample.properties " />

 <!-- These settings control SqlMapClient configuration details, primarily to do with transaction
 management. They are all optional (more detail later in this document). -->
 <settings
 cacheModelsEnabled="true"
 enhancementEnabled="true"
 lazyLoadingEnabled="true"
 maxRequests="128"
 maxSessions="10"
 maxTransactions="5"
 useStatementNamespaces="false"
 defaultStatementTimeout="5"
 statementCachingEnabled="true"
 classInfoCacheEnabled="true"
 />

 <!-- This element declares a factory class that iBATIS will use for creating result objects.
 This element is optional (more detail later in this document). -->
 <resultObjectFactory type="com.mydomain.MyResultObjectFactory" >
 <property name="someProperty" value="someValue"/>
 </resultObjectFactory>

 <!-- Type aliases allow you to use a shorter name for long fully qualified class names. -->
 <typeAlias alias="order" type="testdomain.Order"/>

 <!-- Configure a datasource to use with this SQL Map using SimpleDataSource.
 Notice the use of the properties from the above resource -->
 <transactionManager type="JDBC" >
 <dataSource type="SIMPLE">
 <property name="JDBC.Driver" value="${driver}"/>
 <property name="JDBC.ConnectionURL" value="${url}"/>
 <property name="JDBC.Username" value="${username}"/>
 <property name="JDBC.Password" value="${password}"/>
 <property name="JDBC.DefaultAutoCommit" value="true" />
 <property name="Pool.MaximumActiveConnections" value="10"/>
 <property name="Pool.MaximumIdleConnections" value="5"/>
 <property name="Pool.MaximumCheckoutTime" value="120000"/>
 <property name="Pool.TimeToWait" value="500"/>
 <property name="Pool.PingQuery" value="select 1 from ACCOUNT"/>
 <property name="Pool.PingEnabled" value="false"/>

http://ibatis.apache.org by Clinton Begin

8

Developer Guide iBATIS Data Mapper 2.0

 <property name="Pool.PingConnectionsOlderThan" value="1"/>
 <property name="Pool.PingConnectionsNotUsedFor" value="1"/>
 </dataSource>
 </transactionManager>

 <!-- Identify all SQL Map XML files to be loaded by this SQL map. Notice the paths
 are relative to the classpath. For now, we only have one… -->
 <sqlMap resource="examples/sqlmap/maps/Person.xml" />
</sqlMapConfig>
The following sections of this document discuss the various sections of the SQL Map configuration file.

The <properties> Element

The SQL Map can have a single <properties> element that allows a standard Java properties file
(name=value) to be associated with the SQL Map XML configuration document. By doing so, each named
value in the properties file can become a variable that can be referred to in the SQL Map configuration file
and all Data Mapper referenced within. For example, if the properties file contains the following:

driver=org.hsqldb.jdbcDriver

Then the SQL Map configuration file or each SQL Map referenced by the configuration document can use
the placeholder ${driver} as a value that will be replaced by org.hsqldb.jdbcDriver. For example:

<property name="JDBC.Driver" value="${driver}"/>

This comes in handy during building, testing and deployment. It makes it easy to reconfigure your app for
multiple environments or use automated tools for configuration (e.g. Ant). The properties can be loaded
from the classpath (use the resource attribute) or from any valid URL (use the url attribute). For example,
to load a fixed path file, use:

<properties url=”file:///c:/config/my.properties” />

The <settings> Element

The <settings> element allows you to configure various options and optimizations for the SqlMapClient
instance that will be built using this XML file. The settings element and all of its attributes are completely
optional. The attributes supported and their various behaviors are described in the following table:

maxRequests This is the maximum number of threads that can execute an SQL
statement at a time. Threads beyond the set value will be blocked until
another thread completes execution. Different DBMS have different
limits, but no database is without these limits. This should usually be at
least 10 times maxTransactions (see below) and should always be greater
than both maxSessions and maxTransactions. Often reducing the
maximum number of concurrent requests can increase performance.

Example: maxRequests=”256”
Default: 512

http://ibatis.apache.org by Clinton Begin

9

Developer Guide iBATIS Data Mapper 2.0

maxSessions This is the number of sessions (or clients) that can be active at a given
time. A session is either an explicit session, requested
programmatically, or it is automatic whenever a thread makes use of an
SqlMapClient instance (e.g. executes a statement etc.). This should
always be greater than or equal to maxTransactions and less than
maxRequests. Reducing the maximum number of concurrent sessions
can reduce the overall memory footprint.

Example: maxSessions=”64”
Default: 128

maxTransactions This is the maximum number of threads that can enter
SqlMapClient.startTransaction() at a time. Threads beyond the set value
will be blocked until another thread exits. Different DBMS have
different limits, but no database is without these limits. This value
should always be less than or equal to maxSessions and always much
less than maxRequests. Often reducing the maximum number of
concurrent transactions can increase performance.

Example: maxTransactions=”16”
Default: 32

cacheModelsEnabled This setting globally enables or disables all cache models for an
SqlMapClient. This can come in handy for debugging.

Example: cacheModelsEnabled=”true”
Default: true (enabled)

lazyLoadingEnabled This setting globally enables or disables all lazy loading for an
SqlMapClient. This can come in handy for debugging.

Example: lazyLoadingEnabled=”true”
Default: true (enabled)

enhancementEnabled This setting enables runtime bytecode enhancement to facilitate
optimized JavaBean property access as well as enhanced lazy loading.

Example: enhancementEnabled=”true”
Default: false (disabled)

useStatementNamespaces With this setting enabled, you must always refer to mapped statements
by their fully qualified name, which is the combination of the sqlMap
name and the statement name. For example:

 queryForObject(“sqlMapName.statementName”);

Example: useStatementNamespaces=”false”
Default: false (disabled)

http://ibatis.apache.org by Clinton Begin

10

Developer Guide iBATIS Data Mapper 2.0

defaultStatementTimeout (iBATIS versions 2.2.0 and later)

This setting is an integer value that will be applied as the JDBC query
timeout for all statements. This value can be overridden with the
“statement” attribute of any mapped statement. If not specified, no
query timeout will be set unless specified on the “statement” attribute of
a mapped statement. The specified value is the number of seconds the
driver will wait for a statement to finish. Note that not all drivers
support this setting.

classInfoCacheEnabled With this setting enabled, iBATIS will maintain a cache of introspected
classes. This will lead to a significant reduction in startup time if many
classes are reused.

Example: classInfoCacheEnabled=“true”
Default: true (enabled)

statementCachingEnabled (iBATIS versions 2.3.0 and later)

With this setting enabled, iBATIS will maintain a local cache of
prepared statements. This can lead to significant performance
improvements.

Example: statementCachingEnabled=“true”
Default: true (enabled)

http://ibatis.apache.org by Clinton Begin

11

Developer Guide iBATIS Data Mapper 2.0

The <resultObjectFactory> Element

Important: this feature is available in iBATIS versions 2.2.0 and higher.

The resultObjectFactory element allows you to specify a factory class for creating objects resulting from
the execution of SQL statements. This element is optional – if you don't specify the element, iBATIS will
use internal mechanisms to create result objects (class.newInstance()).

iBATIS creates result objects in these cases:

1. When mapping rows returned from a ResultSet (the most common case)
2. When you use a nested select statement on a result element in a resultMap. If the nested select

statement declares a parameterClass, then iBATIS will create and populate an instance of the class
before executing the nested select

3. When executing stored procedures – iBATIS will create objects for OUTPUT parameters
4. When processing nested result maps. If the nested result map is used in conjunction with the

groupBy support for avoiding N+1 queries, then the object will typically be an implementation of
type Collection, List, or Set. You can provide custom implementations of these interfaces through
the result object factory if you wish. In a 1:1 join with a nested result map, then iBATIS will
create an instance of the specified domain object through this factory.

If you choose to implement a factory, your factory class must implement the interface
com.ibatis.sqlmap.engine.mapping.result.ResultObjectFactory, and your class must have a public
default constructor. The ResultObjectFactory interface has two methods – one to create an object, and one
to accept any property values specified in the configuration.

For example, suppose you specify a resultObjectFactory configuration element like this:

<resultObjectFactory type="com.mydomain.MyResultObjectFactory" >
 <property name="someProperty" value="someValue"/>
</resultObjectFactory>

Then you should code a result object factory class like this:

package com.mydomain;

import com.ibatis.sqlmap.engine.mapping.result.ResultObjectFactory;

public class MyResultObjectFactory implements ResultObjectFactory {

 public MyResultObjectFactory() {
 super();
 }

 public Object createInstance(String statementId, Class clazz)
 throws InstantiationException, IllegalAccessException {

 // create and return instances of clazz here...

 }

 public void setProperty(String name, String value) {
 // save property values here...
 }
}

iBATIS will call the setProperty method once for each property specified in the configuration. All
properties will be set before any call to the createInstance method is processed.

iBATIS will call the createInstance method every time an object needs to be created according to the cases
mentioned above. If you return null from the createInstance method, then iBATIS will attempt to create

http://ibatis.apache.org by Clinton Begin

12

Developer Guide iBATIS Data Mapper 2.0

the object through its normal means (class.newInstance()). If you return null from a request to create
java.util.Collection or java.util.List, then iBATIS will create
java.util.ArrayList. If you return null from a request to create java.util.Set, then iBATIS
will create java.util.HashSet. iBATIS passes the current statement id to let you know the context in
which the object create is requested.

The <typeAlias> Element

The typeAlias element simply allows you to specify a shorter name to refer to what is usually a long, fully
qualified classname. For example:

<typeAlias alias="shortname" type="com.long.class.path.Class"/>

There are some predefined aliases used in the SQL Map Config file. They are:

 Transaction Manager Aliases
JDBC
JTA
EXTERNAL

com.ibatis.sqlmap.engine.transaction.jdbc.JdbcTransactionConfig
com.ibatis.sqlmap.engine.transaction.jta.JtaTransactionConfig
com.ibatis.sqlmap.engine.transaction.external.ExternalTransactionConfig

Data Source Factory Aliases
SIMPLE
DBCP
JNDI

com.ibatis.sqlmap.engine.datasource.SimpleDataSourceFactory
com.ibatis.sqlmap.engine.datasource.DbcpDataSourceFactory
com.ibatis.sqlmap.engine.datasource.JndiDataSourceFactory

The <transactionManager> Element

1.0 Conversion Note: Data Mapper 1.0 allowed multiple datasources to be configured. This became
cumbersome and introduced some bad practices. Therefore 2.0 only allows a single datasource. For
multiple deployments/configurations it is recommended that you use multiple properties files that are
either configured differently by the system, or passed in as a parameter when building the SQL Map (see
the java API section below).

The <transactionManager> element allows you to configure the transaction management services for an
SQL Map. The type attribute indicates which transaction manager to use. The value can either be a class
name or a type alias. The three transaction managers included with the framework are: JDBC, JTA and
EXTERNAL.

JDBC - This allows JDBC to control the transaction via the usual Connection commit() and
rollback() methods.

JTA - This transaction manager uses a JTA global transaction such that the SQL Map activities can
be included as part of a wider scope transaction that possibly involves other databases or
transactional resources. This configuration requires a UserTransaction property set to locate the
user transaction from a JNDI resource. See the JNDI datasource example below for an example of
this configuration.

EXTERNAL – This allows you to manage transactions on your own. You can still configure a
data source, but transactions will not be committed or rolled back as part of the framework
lifecycle. This means that some part of your application external to Data Mapper must manage the
transactions. This setting is also useful for non-transactional databases (e.g. Read-only).

The <transactionManager> element also allows an optional attribute commitRequired that can be true or
false. Normally iBATIS will not commit transactions unless an insert, update, or delete operation has been
performed. This is true even if you explicitly call the commitTransaction() method. This behavior
creates problems in some cases. If you want iBATIS to always commit transactions, even if no insert,

http://ibatis.apache.org by Clinton Begin

13

Developer Guide iBATIS Data Mapper 2.0

update, or delete operation has been performed, then set the value of the commitRequired attribute to true.
Examples of where this attribute is useful include:

1. If you call a stored procedures that updates data as well as returning rows. In that case you would
call the procedure with the queryForList() operation – so iBATIS would not normally commit the
transaction. But then the updates would be rolled back.

2. In a WebSphere environment when you are using connection pooling and you use the JNDI
<dataSource> and the JDBC or JTA transaction manager. WebSphere requires all transactions on
pooled connections to be committed or the connection will not be returned to the pool.

Note that the commitRequired attribute has no effect when using the EXTERNAL transaction manager.

Some of the transaction managers allow extra configuration properties. The following table shows extra
properties that are available for the various transaction managers:

Transaction
Manager

Properties

EXTERNAL Property Description
DefaultAutoCommit If “true”, then setAutoCommit(true) will be called on the

underlying connection for each transaction if that is not the
value supplied by the underlying datasource.

If “false” or unspecified, then setAutoCommit(false) will be
called on the underlying connection for each transaction if
that is not the value supplied by the underlying datasource.

This behavior can be overridden with the
“SetAutoCommitAllowed” property.

SetAutoCommitAllowed If “true” or unspecified, then the behavior specified in the
“DefaultAutoCommit” property will occur.

If “false”, then iBATIS will not call setAutoCommit in any
case – this is useful in environments like WebSphere where
the setAutoCommit method should not be called in any
circumstance.

JTA Property Description
UserTransaction This property is required.

The value of the user transaction. Note that in many cases
this should be set to “java:comp/UserTransaction”

The <dataSource> Element

Included as part of the transaction manager configuration is a dataSource element and a set of properties to
configure a DataSource for use with your SQL Map. There are currently three datasource factories
provided with the framework, but you can also write your own. The included DataSourceFactory
implementations are discussed in further detail below and example configurations are provided for each.

http://ibatis.apache.org by Clinton Begin

14

Developer Guide iBATIS Data Mapper 2.0

SimpleDataSourceFactory

The SimpleDataSource factory provides a basic implementation of a pooling DataSource that is
ideal for providing connections in cases where there is no container provided DataSource. It is
based on the iBATIS SimpleDataSource connection pool implementation.

<transactionManager type="JDBC">
 <dataSource type="SIMPLE">
 <property name="JDBC.Driver" value="org.postgresql.Driver"/>
 <property name="JDBC.ConnectionURL"
 value="jdbc:postgresql://server:5432/dbname"/>
 <property name="JDBC.Username" value="user"/>
 <property name="JDBC.Password" value="password"/>
 <!-- OPTIONAL PROPERTIES BELOW -->
 <property name="JDBC.DefaultAutoCommit" value="false"/>
 <property name="Pool.MaximumActiveConnections" value="10"/>
 <property name="Pool.MaximumIdleConnections" value="5"/>
 <property name="Pool.MaximumCheckoutTime" value="120000"/>
 <property name="Pool.TimeToWait" value="10000"/>
 <property name="Pool.PingQuery" value="select * from dual"/>
 <property name="Pool.PingEnabled" value="false"/>
 <property name="Pool.PingConnectionsOlderThan" value="0"/>
 <property name="Pool.PingConnectionsNotUsedFor" value="0"/>
 <property name="Driver.DriverSpecificProperty" value="SomeValue"/>
 </dataSource>
</transactionManager>

Note that any property prefixed with “Driver.” will be added as a property to the underlying JDBC
driver.

DbcpDataSourceFactory

This implementation uses Jakarta DBCP (Database Connection Pool) to provide connection
pooling services via the DataSource API. This DataSource is ideal where the application/web
container cannot provide a DataSource implementation, or you’re running a standalone
application. IBATIS provides direct access to setting the properties of a DBCP datasource by
allowing you to specify any DBCP property name you desire in the configuration. For example:

<transactionManager type="JDBC">
 <dataSource type="DBCP">
 <property name="driverClassName" value="${driver}"/>
 <property name="url" value="${url}"/>
 <property name="username" value="${username}"/>
 <property name="password" value="${password}"/>
 <!-- OPTIONAL PROPERTIES BELOW -->
 <property name="maxActive" value="10"/>
 <property name="maxIdle" value="5"/>
 <property name="maxWait" value="60000"/>
 <!-- Use of the validation query can be problematic.
 If you have difficulty, try without it. -->
 <property name="validationQuery" value="select * from ACCOUNT"/>
 <property name="logAbandoned" value="false"/>
 <property name="removeAbandoned" value="false"/>
 <property name="removeAbandonedTimeout" value="50000"/>
 <property name="Driver.DriverSpecificProperty" value="SomeValue"/>
 </datasource>
</transactionManager>

http://ibatis.apache.org by Clinton Begin

15

Developer Guide iBATIS Data Mapper 2.0

You can see all available properties here:

http://jakarta.apache.org/commons/dbcp/configuration.html

Note that any property prefixed with “Driver.” will be added as a property to the underlying JDBC
driver as shown above.

iBATIS also supports a less flexible legacy configuration option as show below. However, we
recommend that you use the configuration option shown above.

<transactionManager type="JDBC"> <!-- Legacy DBCP Configuration -->
 <dataSource type="DBCP">
 <property name="JDBC.Driver" value="${driver}"/>
 <property name="JDBC.ConnectionURL" value="${url}"/>
 <property name="JDBC.Username" value="${username}"/>
 <property name="JDBC.Password" value="${password}"/>
 <!-- OPTIONAL PROPERTIES BELOW -->
 <property name="Pool.MaximumActiveConnections" value="10"/>
 <property name="Pool.MaximumIdleConnections" value="5"/>
 <property name="Pool.MaximumWait" value="60000"/>
 <!-- Use of the validation query can be problematic.
 If you have difficulty, try without it. -->
 <property name="Pool.ValidationQuery" value="select * from ACCOUNT"/>
 <property name="Driver.DriverSpecificProperty" value="SomeValue"/>
 </datasource>
</transactionManager>

The properties shown are the only properties recognized by iBATIS when using the legacy
configuration option. Note that any property prefixed with “Driver.” will be added as a property to
the underlying JDBC driver as shown above.

JndiDataSourceFactory

This implementation will retrieve a DataSource implementation from a JNDI context from within
an application container. This is typically used when an application server is in use and a
container managed connection pool and associated DataSource implementation are provided. The
standard way to access a JDBC DataSource implementation is via a JNDI context.
JndiDataSourceFactory provides functionality to access such a DataSource via JNDI. The
configuration parameters that must be specified in the datasource stanza are as follows:

<transactionManager type="JDBC" >
 <dataSource type="JNDI">
 <property name="DataSource" value="java:comp/env/jdbc/jpetstore"/>
 </dataSource>
</transactionManager>

The above configuration will use normal JDBC transaction management. But with a container
managed resource, you might also want to configure it for global transactions as follows:

<transactionManager type="JTA" >
 <property name="UserTransaction" value="java:/comp/UserTransaction"/>
 <dataSource type="JNDI">
 <property name="DataSource" value="java:comp/env/jdbc/jpetstore"/>
 </dataSource>
</transactionManager>

Notice the UserTransaction property that points to the JNDI location where the UserTransaction
instance can be found. This is required for JTA transaction management so that your SQL Map
take part in a wider scoped transaction involving other databases and transactional resources.

http://ibatis.apache.org by Clinton Begin

16

Developer Guide iBATIS Data Mapper 2.0

JNDI context properties can be added before the lookup by specifying additional properties with a
prefix of “context.”. For example:

 <property name=“context.java.naming.provider.url” value= “ldap://somehost:389”/>

The <sqlMap> Element

The sqlMap element is used to explicitly include an SQL Map or another SQL Map Configuration file.
Each SQL Map XML file that is going to be used by this SqlMapClient instance, must be declared. The
SQL Map XML files will be loaded as a stream resource from the classpath or from a URL. You must
specify any and all Data Mapper (as many as there are). Here are some examples:

 <!-- CLASSPATH RESOURCES -->
 <sqlMap resource="com/ibatis/examples/sql/Customer.xml" />
 <sqlMap resource="com/ibatis/examples/sql/Account.xml" />
 <sqlMap resource="com/ibatis/examples/sql/Product.xml" />

 <!-- URL RESOURCES -->
 <sqlMap url="file:///c:/config/Customer.xml " />
 <sqlMap url="file:///c:/config/Account.xml " />
 <sqlMap url="file:///c:/config/Product.xml" />

The next several sections detail the structure of these SQL Map XML files.

http://ibatis.apache.org by Clinton Begin

17

Developer Guide iBATIS Data Mapper 2.0

The SQL Map XML File
(http://ibatis.apache.org/dtd/sql-map-config-2.dtd)

In the examples above, we saw the most simple forms of Data Mapper. There are other options available
within the SQL Map document structure. Here is an example of a mapped statement that makes use of more
features.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMap
 PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-2.dtd">
<sqlMap namespace=”Product”>

 <cacheModel id=”productCache” type=”LRU”>
<flushInterval hours=”24”/>
<property name=”size” value=”1000” />

 </cacheModel>

<typeAlias alias=”product” type=”com.ibatis.example.Product” />

<parameterMap id=”productParam” class=”product”>
 <parameter property=”id”/>

</parameterMap>

<resultMap id=”productResult” class=”product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>

 </resultMap>

<select id=”getProduct” parameterMap=”productParam”
 resultMap=”productResult” cacheModel=”product-cache”>
 select * from PRODUCT where PRD_ID = ?

 </select>

</sqlMap>

TOO MUCH? Although the framework is doing a lot for you, that might seem like a lot of extra work
(XML) for a simple select statement. Worry not. Here’s a shorthand version of the above.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMap
 PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-2.dtd">
<sqlMap namespace=”Product”>

 <select id=”getProduct” parameterClass=” com.ibatis.example.Product”
 resultClass=”com.ibatis.example.Product”>

select
 PRD_ID as id,
 PRD_DESCRIPTION as description
from PRODUCT
where PRD_ID = #id#

 </select>

</sqlMap>

Now, these statements aren’t exactly equal in terms of the SQL Map behavior –there are some differences.
First, the latter statement does not define a cache, and therefore every request will hit the database. Second,
the latter statement uses auto-mapping features of the framework, which can create some overhead.
However, both of these statements would be executed exactly the same way from your Java code and

http://ibatis.apache.org by Clinton Begin

18

Developer Guide iBATIS Data Mapper 2.0

therefore you can start with the simpler solution first and move to the more advanced mapping as needed in
the future. Simplest solution first is best practice in many modern methodologies.

A single SQL Map XML file can contain as many cache models, parameter maps, result maps and
statements as you like. Use discretion and organize the statements and maps appropriately for your
application (group them logically).

Mapped Statements

The Data Mapper concept is centered around mapped statements. Mapped statements can be any SQL
statement and can have parameter maps (input) and result maps (output). If the case is simple, the mapped
statement can be configured directly to a class for parameters and results. The mapped statement can also
be configured to use a cache model to cache popular results in memory.

<statement id=”statementName”
[parameterClass=”some.class.Name”]
[resultClass=”some.class.Name”]
[parameterMap=”nameOfParameterMap”]
[resultMap=”nameOfResultMap”]
[cacheModel=”nameOfCache”]
[timeout=“5”]>

select * from PRODUCT where PRD_ID = [?|#propertyName#]
order by [$simpleDynamic$]

</statement>

Where statement can be any of insert, update, delete, select, procedure, or statement. In the above
statement, the [bracketed] parts are optional and in some cases only certain combinations are allowed. So
it is perfectly legal to have a Mapped Statement with as simple as this:

<insert id=”insertTestProduct” >
insert into PRODUCT (PRD_ID, PRD_DESCRIPTION) values (1, “Shih Tzu”)

</insert>

The above example is obviously unlikely, however this can come in handy if you want to simply make use
of the SQL Map framework for executing arbitrary SQL statements. However, it will be more common to
make use of the JavaBeans mapping features using Parameter Maps and Result Maps, as that is where the
true power is. The next several sections describe the structure and attributes and how they effect the mapped
statement.

Statement Types

The <statement> element is a general “catch all” statement that can be used for any type of SQL statement.
Generally it is a good idea to use one of the more specific statement elements. The more specific elements
provide a more intuitive XML DTD and sometimes provides additional features that a normal <statement>
element cannot. The following table summarizes the statement elements and their supported attributes and
features:

http://ibatis.apache.org by Clinton Begin

19

Developer Guide iBATIS Data Mapper 2.0

Statement Element Attributes Child Elements Methods
<statement> id

parameterClass
resultClass
parameterMap
resultMap
cacheModel
resultSetType
fetchSize
xmlResultName
remapResults
timeout

All dynamic elements insert
update
delete
All query methods

<insert> id
parameterClass
parameterMap
timeout

All dynamic elements
<selectKey>

insert
update
delete

<update> id
parameterClass
parameterMap
timeout

All dynamic elements insert
update
delete

<delete> id
parameterClass
parameterMap
timeout

All dynamic elements insert
update
delete

<select> id
parameterClass
resultClass
parameterMap
resultMap
cacheModel
resultSetType
fetchSize
xmlResultName
remapResults
timeout

All dynamic elements All query methods

<procedure> id
parameterClass
resultClass
parameterMap
resultMap
cacheModel
fetchSize
xmlResultName
remapResults
timeout

All dynamic elements insert
update
delete
All query methods

http://ibatis.apache.org by Clinton Begin

20

Developer Guide iBATIS Data Mapper 2.0

The SQL

The SQL is obviously the most important part of the map. It can be any SQL that is valid for your database
and JDBC driver. You can use any functions available and even send multiple statements as long as your
driver supports it. Because you are combining SQL and XML in a single document, there is potential for
conflicting special characters. The most common obviously is the greater-than and less-than symbols (<>).
These are commonly required in SQL and are reserved symbols in XML. There is a simple solution to deal
with these and any other special XML characters you might need to put in your SQL. By using a standard
XML CDATA section, none of the special characters will be parsed and the problem is solved. For
example:

<select id="getPersonsByAge" parameterClass=”int” resultClass="examples.domain.Person">
SELECT *
FROM PERSON
WHERE AGE <![CDATA[>]]> #value#

</select>

Reusing SQL Fragments

When writing SqlMaps, you often encounter duplicate fragments of SQL, for example a FROM-clause or
constraint-statement. iBATIS offers a simple yet powerful tag to reuse them. For the sake of simplicity, let's
assume we want to get some items and we want to do a count on them. Normally, you would write
something like this:

<select id="selectItemCount" resultClass="int">
SELECT COUNT(*) AS total
FROM items
WHERE parentid = 6

</select>

<select id="selectItems" resultClass="Item">
SELECT id, name
FROM items
WHERE parentid = 6

</select>

To eliminate this duplication, we use the tags <sql> and <include>. The <sql> tag contains the fragment to
reuse, the <include> tag includes such a fragment in a statement. For example:

<sql id="selectItem_fragment">
FROM items
WHERE parentid = 6

</sql>

<select id="selectItemCount" resultClass="int">
SELECT COUNT(*) AS total
<include refid="selectItem_fragment"/>

</select>

<select id="selectItems" resultClass="Item">
SELECT id, name
<include refid="selectItem_fragment"/>

</select>

The <include> tag is namespace aware so you can refer to fragments even when they are located in another
map (however, due to the way iBATIS loads the SqlMaps, the included fragment should be loaded before
the including statement).

http://ibatis.apache.org by Clinton Begin

21

Developer Guide iBATIS Data Mapper 2.0

The fragments are included and processed on query-execution so parameters can be used too:

<sql id="selectItem_fragment">
FROM items
WHERE parentid = #value#

</sql>

<select id="selectItemCount" parameterClass="int" resultClass="int">
SELECT COUNT(*) AS total
<include refid="selectItem_fragment"/>

</select>

<select id="selectItems" parameterClass="int" resultClass="Item">
SELECT id, name
<include refid="selectItem_fragment"/>

</select>

Auto-Generated Keys

Many relational database systems support auto-generation of primary key fields. This feature of the
RDBMS is often (if not always) proprietary. Data Mapper supports auto-generated keys via the
<selectKey> stanza of the <insert> element. Both pre-generated keys (e.g. Oracle) and post-generated
(MS-SQL Server) keys are supported. Here are a couple of examples:

<!—Oracle SEQUENCE Example -->
<insert id="insertProduct-ORACLE" parameterClass="com.domain.Product">
 <selectKey resultClass="int" >
 SELECT STOCKIDSEQUENCE.NEXTVAL AS ID FROM DUAL
 </selectKey>
 insert into PRODUCT (PRD_ID,PRD_DESCRIPTION)
 values (#id#,#description#)
</insert>

<!— Microsoft SQL Server IDENTITY Column Example -->
<insert id="insertProduct-MS-SQL" parameterClass="com.domain.Product">
 insert into PRODUCT (PRD_DESCRIPTION)
 values (#description#)
 <selectKey resultClass="int" >
 SELECT @@IDENTITY AS ID
 </selectKey>
</insert>

The selectKey statement is executed before the insert statement if it is placed before the insert SQL,
otherwise the selectKey statement is executed after the insert statement. In the previous examples, the
Oracle example shows that the selectKey will be executed before the insert statement (as is appropriate for
a sequence). The SQL Server example shows that the selectKey statement will be executed after the insert
statement (as is appropriate for an identity column).

With iBATIS versions 2.2.0 and later, you can explicitly state the order of execution of the statements if
you wish. The selectKey element supports an attribute type that can be used to explicitly set the execution
order. The value of the type attribute can be either “pre” or “post” - meaning that the statement will be
executed before or after the insert statement. If you specify the type attribute, then the value you specify
will be used regardless of the position of the selectKey element. For example, in the following statement
the selectKey statement will be executed before the insert statement, even though the element is placed after
the insert statement.

http://ibatis.apache.org by Clinton Begin

22

Developer Guide iBATIS Data Mapper 2.0

<insert id="insertProduct-ORACLE-type-specified" parameterClass="com.domain.Product">
 insert into PRODUCT (PRD_ID,PRD_DESCRIPTION)
 values (#id#,#description#)
 <selectKey resultClass="int" type="pre" >
 SELECT STOCKIDSEQUENCE.NEXTVAL AS ID FROM DUAL
 </selectKey>
</insert>

<selectKey> attribute reference:

<selectKey> Attribute Description
resultClass The Java class that should be generated as a result

of running the <selectKey> statement (typically an
Integer or Long).

keyProperty The property that will be set in the parameter object
as a result of running the <selectKey> statement. If
not specified, then iBATIS will try to find the
property based on the column name returned from
the database. If the property cannot be found, then
no property will be set but iBATIS will still return
the generated key as the result of the <insert>
statement.

type “pre” or “post”. If specified, then this denotes that
the select key statement will be executed before
(pre) or after (post) the related insert statement. If
not specified, the order will be inferred from the
placement of the element within the insert statement
(if placed before the SQL, then the selectKey will be
executed before the statement).

This attribute is available in iBATIS versions 2.2.0
and later only.

Stored Procedures

Stored procedures are supported via the <procedure> statement element. The following example shows
how a stored procedure would be used with output parameters.

<parameterMap id="swapParameters" class="map" >
 <parameter property="email1" jdbcType="VARCHAR" javaType="java.lang.String" mode="INOUT"/>
 <parameter property="email2" jdbcType="VARCHAR" javaType="java.lang.String" mode="INOUT"/>
</parameterMap>

<procedure id="swapEmailAddresses" parameterMap="swapParameters" >
 {call swap_email_address (?, ?)}
</procedure>

Calling the above procedure would swap two email addresses between two columns (database table) and
also in the parameter object (Map). The parameter object is only modified if the parameter mappings mode
attribute is set to “INOUT” or “OUT”. Otherwise they are left unchanged. Obviously immutable parameter
objects (e.g. String) cannot be modified.

Note! Always be sure to use the standard JDBC stored procedure syntax. See the JDBC CallableStatement
documentation for more information.

http://ibatis.apache.org by Clinton Begin

23

Developer Guide iBATIS Data Mapper 2.0

parameterClass

The value of the parameterClass attribute is the fully qualified name of a Java class (i.e. including package).
The parameterClass attribute is optional, but highly recommended. It is used to limit parameters passed to
the statement, as well as to optimize the performance of the framework. If you’re using a parameterMap,
there is no need to use the parameterClass attribute. For example, if you only wanted to allow objects of
type (i.e. instanceof) “examples.domain.Product” to be passed in as a parameter, you could do something
like this:

<insert id=”statementName” parameterClass=” examples.domain.Product”>
insert into PRODUCT values (#id#, #description#, #price#)

</insert>

IMPORTANT: Although optional for backward compatibility, it is highly recommended to always
provide a parameter class (unless of course there are no required parameters). You will achieve better
performance by providing the class, because the framework is capable of optimizing itself if it knows the
type in advance.

Without a parameterClass specified, any JavaBean with appropriate properties (get/set methods) will be
accepted as a parameter, which can be very useful in some situations.

parameterMap

The value of the parameterMap attribute is the name of a defined parameterMap element (see below). The
parameterMap attribute is rarely used in favor of the parameterClass attribute (above) and inline parameters
(described below). However, this is a good approach if XML purity and consistency is your concern, or
you need a more descriptive parameterMap (e.g. for stored procedures).

Note! Dynamic mapped statements (described below) only support inline parameters and do not work with
parameter maps.

The idea of a parameterMap is to define an ordered list of parameters that match up with the value tokens of
a JDBC PreparedStatement. For example:

<parameterMap id=”insert-product-param” class=”com.domain.Product”>
<parameter property=”id”/>
<parameter property=”description”/>

</parameterMap>

<insert id=”insertProduct” parameterMap=”insert-product-param”>
insert into PRODUCT (PRD_ID, PRD_DESCRIPTION) values (?,?)

</insert>

In the example above, the parameter map describes two parameters that will match, in order, the value
tokens (“?”) in the SQL statement. So the first “?” will be replaced by the value of the “id” property and the
second with the “description” property. Parameter maps and their options are described in more detail later
in this document.

A Quick Glance at Inline Parameters

Although further details are provided later in the document, here is a quick intro to inline parameters. Inline
parameters can be used inside of a mapped statement. For example:

<insert id=”insertProduct” >
insert into PRODUCT (PRD_ID, PRD_DESCRIPTION)
values (#id#, #description#)

</insert>

http://ibatis.apache.org by Clinton Begin

24

Developer Guide iBATIS Data Mapper 2.0

In the example above, the inline parameters are #id# and #description#. Each represents a JavaBeans
property that will be used to populate the statement parameter in-place. In the example above, the Product
class (that we’ve used from previous examples) has id and description properties that will be read for a
value to be placed in the statement where the associated property token is located. So for a statement that is
passed a Product with id=5 and description=”dog”, the statement might be executed as follows:

insert into PRODUCT (PRD_ID, PRD_DESCRIPTION)
values (5, ‘dog’)

resultClass

The value of the resultClass attribute is the fully qualified name of a Java class (i.e. including package).
The resultClass attribute allows us to specify a class that will be auto-mapped to our JDBC ResultSet based
on the ResultSetMetaData. Wherever a property on the JavaBean and a column of the ResultSet match, the
property will be populated with the column value. This makes query mapped statements very short and
sweet indeed! For example:

<select id="getPerson" parameterClass=”int” resultClass="examples.domain.Person">
 SELECT

PER_ID as id,
PER_FIRST_NAME as firstName,
PER_LAST_NAME as lastName,
PER_BIRTH_DATE as birthDate,
PER_WEIGHT_KG as weightInKilograms,
PER_HEIGHT_M as heightInMeters

FROM PERSON
WHERE PER_ID = #value#

</select>

In the example above, the Person class has properties including: id, firstName, lastName, birthDate,
weightInKilograms and heightInMeters. Each of these corresponds with the column aliases described by
the SQL select statement (using the “as” keyword –a standard SQL feature). Column aliases are only
required if the database column names don’t match, which in general they do not. When executed, a Person
object will be instantiated and the results from the result set will be mapped to the instance based on the
property names and column names.

As stated earlier, there are some limitations of using auto-mapping with a resultClass. There is no way to
specify the types of the output columns (if necessary), there is no way to automatically load related data
(complex properties) and there is also a slight performance consequence in that this approach requires
accessing the ResultSetMetaData. All of these limitations can be overcome by using an explicit resultMap.
Result maps are described in more detail later in this document.

resultMap

The resultMap property is one of the more commonly used and most important attributes to understand.
The value of the resultMap attribute is the name of a defined resultMap element (see below). Using the
resultMap attribute allows you to control how data is extracted from a result set and which properties to
map to which columns. Unlike the auto-mapping approach using the resultClass attribute (above), the
resultMap allows you to describe the column type, a null value replacement and complex property
mappings (including other JavaBeans, Collections and primitive type wrappers).

The full details of the resultMap structure are discussed later in this document, but the following example
will demonstrate how the resultMap looks related to a statement.

<resultMap id=”get-product-result” class=”com.ibatis.example.Product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>

</resultMap>

http://ibatis.apache.org by Clinton Begin

25

Developer Guide iBATIS Data Mapper 2.0

<select id=”getProduct” resultMap=”get-product-result”>
select * from PRODUCT

</select>

In the example above, the ResultSet from the SQL query will be mapped to a Product instance using the
resultMap definition. The resultMap shows that the “id” property will be populated by the “PRD_ID”
column and the “description” property will be populated by the “PRD_DESCRIPTION” column. Notice
that using “select *” is supported. There is no need to map all of the returned columns in the ResultSet.

cacheModel

The cacheModel attribute value is the name of a defined cacheModel element (see below). A cacheModel
is used to describe a cache for use with a query mapped statement. Each query mapped statement can use a
different cacheModel, or the same one. Full details of the cacheModel element and its attributes are
discussed later. The following example will demonstrate how it looks related to a statement.

<cacheModel id="product-cache" type="LRU">
<flushInterval hours="24"/>
<flushOnExecute statement="insertProduct"/>
<flushOnExecute statement="updateProduct"/>
<flushOnExecute statement="deleteProduct"/>
<property name=”size” value=”1000” />

</cacheModel>

<select id=”getProductList” parameterClass=”int” cacheModel=”product-cache”>
select * from PRODUCT where PRD_CAT_ID = #value#

</select>

In the above example, a cache is defined for products that uses a WEAK reference type and flushes every
24 hours or whenever associated update statements are executed.

xmlResultName

When mapping results directly to an XML document, the value of the xmlResultName will be the name of
the root element of the XML document. For example:

<select id="getPerson" parameterClass=”int” resultClass="xml" xmlResultName=”person”>
 SELECT

PER_ID as id,
PER_FIRST_NAME as firstName,
PER_LAST_NAME as lastName,
PER_BIRTH_DATE as birthDate,
PER_WEIGHT_KG as weightInKilograms,
PER_HEIGHT_M as heightInMeters

FROM PERSON
WHERE PER_ID = #value#

</select>

The above select statement would produce a result XML object of the following structure:

<person>
 <id>1</id>
 <firstName>Clinton</firstName>
 <lastName>Begin</lastName>
 <birthDate>1900-01-01</birthDate>
 <weightInKilograms>89</weightInKilograms>
 <heightInMeters>1.77</heightInMeters>
</person>

http://ibatis.apache.org by Clinton Begin

26

Developer Guide iBATIS Data Mapper 2.0

remapResults

The remapResults attribute is available on <statement>, <select>, and <procedure> mapped statements. It's
an optional attribute and the default is false.

The remapResults attribute should be set to true when a query has a variable set of return columns. For
example consider the following queries:

SELECT $fieldList$
FROM table

In the former example the list of column is dynamic, even though the table is always the same.

SELECT *
FROM $sometable$

In the former example the table could be different. Because of the usage of * in the select clause, the
resulting column names could be different as well. Dynamic elements could also cause the column list to
change from one query execution to the next one.

Since the overhead to introspect/determine the resultset metadata is not trivial, iBATIS will remember what
was returned the last time the query was run. This creates problems in situations similar to the examples
above, hence the possibility to do metadata introspection with every query execution.

So if the return columns can change set remapResults to true, else set remapResults to false to avoid the
overhead of metadata introspection.

resultSetType

To specify the resultSetType of the SQL statement. It can either be:

• FORWARD_ONLY: cursor may move only forward
• SCROLL_INSENSITIVE: cursor is scrollable but generally not sensitive to changes made by others
• SCROLL_SENSITIVE: cursor is scrollable and generally sensitive to changes made by others

Note that resultSetType is generally not required and that different JDBC drivers may behave differently
using the same resultSetType setting (e.g. Oracle does not support SCROLL_SENSITIVE).

fetchSize

Sets the fetchSize on the SQL statement that will be executed. It gives the JDBC driver a hint to do
prefetching in order to minimize round-trips to the database server.

timeout (iBATIS versions 2.2.0 and later only)

Sets the JDBC query timeout for this statement. Any value specified here will override the value specified
in the “defaultStatementTimeout” setting in the SQLMapConfig.xml file. If you specify a default timeout
and decide that you don't want a timeout for a particular statement, set the timeout value to 0. The specified
value is the number of seconds the driver will wait for a statement to finish. Note that not all drivers
support this setting.

http://ibatis.apache.org by Clinton Begin

27

Developer Guide iBATIS Data Mapper 2.0

Parameter Maps and Inline Parameters

As you’ve seen above, the parameterMap is responsible for mapping JavaBeans properties to the
parameters of a statement. Although parameterMaps are rare in their external form, understanding them
will help you understand inline parameters. Inline parameters are discussed immediately following this
section. We include this information for reference purposes, but strongly suggest that you use inline
parameters rather than parameter maps.

<parameterMap id=”parameterMapName” [class=”com.domain.Product”]>
<parameter property =”propertyName” [jdbcType=”VARCHAR”] [javaType=”string”]

 [nullValue=“-9999”]
 [typeName=”{REF or user-defined type}”]
 [resultMap=someResultMap]
 [mode=IN|OUT|INOUT]
 [typeHandler=someTypeHandler]
 [numericScale=2]/>

<parameter …… />
<parameter …… />

</parameterMap>

The parts in [brackets] are optional. The parameterMap itself only requires a id attribute that is an
identifier that statements will use to refer to it. The class attribute is optional but highly recommended.
Similar to the parameterClass attribute of a statement, the class attribute allows the framework to validate
the incoming parameter as well as optimize the engine for performance.

<parameter> Elements

The parameterMap can contain any number of parameter mappings that map directly to the parameters of a
statement. The next few sections describe the attributes of the property elements:

property

The property attribute of the parameter map is the name of a JavaBeans property (get method) of the
parameter object passed to a mapped statement. The name can be used more than once depending on the
number of times it is needed in the statement (e.g. where the same property that is updated in the set clause
of an SQL update statement, is also used as the key in the where clause).

jdbcType

The jdbcType attribute is used to explicitly specify the database column type of the parameter to be set by
this property. Some JDBC drivers are not able to identify the type of a column for certain operations
without explicitly telling the driver the column type. A perfect example of this is the
PreparedStatement.setNull(int parameterIndex, int sqlType) method. This method requires the type to be
specified. Some drivers will allow the type to be implicit by simply sending Types.OTHER or
Types.NULL. However, the behavior is inconsistent and some drivers need the exact type to be specified.
For such situations, the Data Mapper API allows the type to be specified using the jdbcType attribute of the
parameterMap property element.

This attribute is normally only required if the column is nullable. Although, another reason to use the type
attribute is to explicitly specify date types. Whereas Java only has one Date value type (java.util.Date),
most SQL databases have many –usually at least 3 different types. Because of this you might want to
specify explicitly that your column type is DATE versus DATETIME (etc.).

The jdbcType attribute can be set to any string value that matches a constant in the JDBC Types class.
Although it can be set to any of these, some types are not supported (e.g. blobs). A section later in this
document describes the types that are supported by the framework.

http://ibatis.apache.org by Clinton Begin

28

Developer Guide iBATIS Data Mapper 2.0

Note! Most drivers only need the type specified for nullable columns. Therefore, for such drivers you only
need to specify the type for the columns that are nullable.

Note! When using an Oracle driver, you will get an “Invalid column type” error if you attempt to set a null
value to a column without specifying its type.

javaType

The javaType attribute is used to explicitly specify the Java property type of the parameter to be set.
Normally this can be derived from a JavaBeans property through reflection, but certain mappings such as
Map and XML mappings cannot provide the type to the framework. If the javaType is not set and the
framework cannot otherwise determine the type, the type is assumed to be Object.

typeName

The typeName attribute is used to explicitly specify a REF type or a user-defined type.

From the javadoc the following is stated:

The typeName attribute... “should be used for a user-defined or REF output parameter. Examples of user-
defined types include: STRUCT, DISTINCT, JAVA_OBJECT, and named array types. ... For a user-
defined parameter, the fully-qualified SQL type name of the parameter should also be given, while a REF
parameter requires that the fully-qualified type name of the referenced type be given. A JDBC driver that
does not need the type code and type name information may ignore it. To be portable, however, applications
should always provide these values for user-defined and REF parameters. Although it is intended for user-
defined and REF parameters, this attribute may be used to register a parameter of any JDBC type. If the
parameter does not have a user-defined or REF type, the typeName parameter is ignored.“

* italicized words were substituted to put the explanation in context of this documentation

nullValue

The nullValue attribute can be set to any valid value (based on property type). The null attribute is used to
specify an outgoing null value replacement. What this means is that when the value is detected in the
JavaBeans property, a NULL will be written to the database (the opposite behavior of an inbound null value
replacement). This allows you to use a “magic” null number in your application for types that do not
support null values (e.g. int, double, float etc.). When these types of properties contain a matching null
value (e.g. –9999), a NULL will be written to the database instead of the value.

resultMap

Specify the resultMap element when you expect an instance of java.sql.ResultSet as the value of a stored
procedure output parameter. This will enable iBATIS to do normal result set to object mapping.

mode

The mode attribute specifies the mode of a stored procedure parameter. Valid values are IN, OUT, or
INOUT.

typeHandler

The typeHandler attribute is used to specify a custom type handler that will be used for this property instead
of the default iBATIS type system. If specified, this value should be the fully qualified name of a class that
implements either the com.ibatis.sqlmap.engine.type.TypeHandler interface or the
com.ibatis.sqlmap.client.extensions.TypeHandlerCallback interface. This value
overrides any global type handler that might otherwise be applied to this property. There is further detail on
custom type handlers later in this document.

http://ibatis.apache.org by Clinton Begin

29

Developer Guide iBATIS Data Mapper 2.0

numericScale

(numericScale is available in iBATIS versions 2.2.0 and later only)

The numericScale attribute is used to specify the scale (digits to the right of the decimal point) for
NUMERIC or DECIMAL stored procedure output parameters. If you specify OUT or INOUT for the
mode attribute, and the jdbcType is DECIMAL or NUMERIC, then you should also specify a value for
numericScale. The value specified for this attribute must be an integer greater than or equal to zero.

A <parameterMap> Example

An example of a parameterMap that uses the full structure is as follows

<parameterMap id=”insert-product-param” class=”com.domain.Product”>
<parameter property=”id” jdbcType=”NUMERIC” javaType=”int” nullValue=”-9999999”/>
<parameter property=”description” jdbcType=”VARCHAR” nullValue=”NO_ENTRY”/>

</parameterMap>

<insert id=”insertProduct” parameterMap=”insert-product-param”>
insert into PRODUCT (PRD_ID, PRD_DESCRIPTION) values (?,?)

</insert>

In the above example, the JavaBeans properties id and description will be applied to the parameters of the
Mapped Statement insertProduct in the order they are listed. So, id will be applied to the first parameter (?)
and description to the second. If the orders were reversed, the XML would look like the following:

<parameterMap id=”insert-product-param” class=”com.domain.Product”>
<parameter property=”description” />
<parameter property=”id”/>

</parameterMap>

<insert id=”insertProduct” parameterMap=”insert-product-param”>
insert into PRODUCT (PRD_DESCRIPTION, PRD_ID) values (?,?)

</insert>

Note! Parameter Map names are always local to the SQL Map XML file that they are defined in. You can
refer to a Parameter Map in another SQL Map XML file by prefixing the id of the Parameter Map with the
id of the SQL Map (set in the <sqlMap> root tag). For example, to refer to the above parameter map from a
different file, the full name to reference would be “Product.insert-product-param”.

Inline Parameter Maps

Although very descriptive, the above syntax for declaring parameterMaps is very verbose. Inline parameter
maps are less verbose, more descriptive, and we strongly suggest that you use them instead of coding
explicit parameter maps. With inline parameter maps, you place the parameter definition inline with the
SQL. By default, any Mapped Statement that has no explicit parameterMap specified will be parsed for
inline parameters. The previous example (i.e. product), implemented with an inline parameter map, would
look like this:

<insert id=”insertProduct” parameterClass=”com.domain.Product”>
 insert into PRODUCT (PRD_ID, PRD_DESCRIPTION)
 values (#id#, #description#)

</insert>

Declaring types can be accomplished with inline parameters by using the following syntax:

http://ibatis.apache.org by Clinton Begin

30

Developer Guide iBATIS Data Mapper 2.0

<insert id=”insertProduct” parameterClass=”com.domain.Product”>
 insert into PRODUCT (PRD_ID, PRD_DESCRIPTION)
 values (#id:NUMERIC#, #description:VARCHAR#)

</insert>

Declaring types and null value replacements can be accomplished with inline parameters by using the
following syntax:

<insert id=”insertProduct” parameterClass=”com.domain.Product”>
 insert into PRODUCT (PRD_ID, PRD_DESCRIPTION)
 values (#id:NUMERIC:-999999#, #description:VARCHAR:NO_ENTRY#)

</insert>

Note! When using inline parameters, you cannot specify the null value replacement without also specifying
the type. You must specify both due to the parsing order.

Note! If you want full transparency of null values, you must also specify null value replacements in your
result maps, as discussed later in this document.

Note! If you require a lot of type descriptors and null value replacements, you might be able to achieve
cleaner code by using an external parameterMap.

Inline Parameter Map Syntax

iBATIS supports two different syntaxes for in line parameter maps – a simple syntax, and a more advanced
and more complete syntax..

The simple syntax is as follows:

#propertyName# - OR -
#propertyName:jdbcType# - OR -
#propertyName:jdbcType:nullValue#

Examples of this syntax are as above. The propertyName element is the name of a property in the
parameter object (or the value of the parameter object itself if the parameter object is a simple value like
String, Integer, etc.). The jdbcType element is used to specify the JDBC type of the parameter. The value
must be one of the types listed in java.sql.Types (VARCHAR, INTEGER, etc.) Generally the
jdbcType element is needed if there is a possibility that the value could be NULL, or to specify the use of
DATE or TIME fields (as opposed to TIMESTAMP fields). The nullValue element is used to specify the
NULL replacement value as described above. Note that you cannot specify nullValue unless you also
specify jdbcType.

 This syntax is appropriate in almost all situations unless you need access to the some of the advanced
options of a formal parameter map (for example, when calling a stored procedure).

The more advanced syntax is as follows:

#propertyName,javaType=?,jdbcType=?,mode=?,nullValue=?,handler=?,numericScale=?#

Where “?” is a value you specify for the attribute.

The advanced syntax gives you access to most values of a formal parameter map. The propertyName
element is required, all other values are optional. The values can be specified in any order, except that the
propertyName element must be first. Values allowed for the different attributes are exactly what is allowed
when using a formal parameter map. Also note that with this syntax, the handler attribute will use an
aliased name for the type handler is such an alias is registered. An example of this syntax used to call a
stored procedure is as follows:

http://ibatis.apache.org by Clinton Begin

31

Developer Guide iBATIS Data Mapper 2.0

<procedure id=“callProcedure” parameterClass=”com.mydomain.MyParameter”>
{call MyProcedure
(#parm1,jdbcType=INTEGER,mode=IN#, #parm2,jdbcType=INTEGER,mode=IN#,
 #parm3,jdbcType=DECIMAL,mode=OUT,numericScale=2#)}

</procedure>

Primitive Type Parameters

It is not always necessary or convenient to write a JavaBean just to use as a parameter. In these cases you
are perfectly welcome to use a primitive type wrapper object (String, Integer, Date etc.) as the parameter
directly. For example:

<select id=”insertProduct” parameter=”java.lang.Integer”>
select * from PRODUCT where PRD_ID = #value#

</select>

Assuming PRD_ID is a numeric type, when a call is made to this mapped statement an java.lang.Integer
object can be passed in. The #value# parameter will be replaced with the value of the Integer instance.
The name “value” is simply a placeholder and can be any moniker. Result Maps (discussed below) support
primitive types as results as well. See the Result Map section and Programming Data Mapper (API) section
below for more information about using primitive types as parameters.

Primitive types are aliased for more concise code. For example, “int” can be used in place of
“java.lang.Integer”. The aliases are described in the table below titled: “Supported Types for Parameter
Maps and Result Maps”.

Map Type Parameters

If you are in a situation where it is not necessary or convenient to write a JavaBean class, and a single
primitive type parameter won’t do (e.g. there are multiple parameters), you can use a Map (e.g. HashMap,
TreeMap) as a parameter object. For example:

<select id=”insertProduct” parameterClass=”java.util.Map”>
 select * from PRODUCT

where PRD_CAT_ID = #catId#
and PRD_CODE = #code#

</select>

Notice that there is no difference in the mapped statement implementation! In the above example, if a Map
instance was passed into the call to the statement, the Map must contain keys named “catId” and “code”.
The values referenced by those keys would be of the appropriate type, such as Integer and String (for the
example above). Result Maps (discussed below) support Map types as results as well. See the Result Map
section and Programming Data Mapper (API) section below for more information about using Map types as
parameters.

Map types are also aliased for more concise code. For example, “map” can be used in place of
“java.util.Map”. The aliases are described in the table below titled: “Supported Types for Parameter Maps
and Result Maps”.

http://ibatis.apache.org by Clinton Begin

32

Developer Guide iBATIS Data Mapper 2.0

Substitution Strings

iBATIS always uses JDBC prepared statements to execute SQL. A JDBC prepared statement wupports
parameters through the use of “parameter markers”. Both parameter maps and inline parameters cause
iBATIS to generate SQL with parameter markers in place of the specified parameter. For example, if you
code this statement:

select * from PRODUCT where PRD_ID = #value#

iBATIS will generate a prepared statement with this SQL string:

select * from PRODUCT where PRD_ID = ?

Databases allow parameter markers in most, but not all, parts of an SQL statement. For example, this type
of statement is generally not allowed:

select * from ?

The database cannot prepare this statement, because it does not know what table will be used. So if you
specify a statement like this:

select * from #tableName#

then you will generally receive an SQLException.

To overcome some of these issues, iBATIS provides syntax for substituting strings into SQL before the
statement is prepared. You can use this support to generate a dynamic SQL statement. An example of the
substitution syntax is as follows:

select * from $tableName$

With this syntax, iBATIS will substitute the value of the “tableName” property into the SQL before the
statement is prepared. With this support, you can substitute string into any part of an SQL statement.

Important Note 1: This support will only substitute Strings, so it is not appropriate for complex data types
like Date or Timestamp.

Important Note 2: If you use this support to alter a table name, or a column list, in an SQL select statement,
then you should always specify remapResults=“true”.

Result Maps

Result maps are an extremely important component of Data Mapper. The resultMap is responsible for
mapping JavaBeans properties to the columns of a ResultSet produced by executing a query mapped
statement. The structure of a resultMap looks like this:

http://ibatis.apache.org by Clinton Begin

33

Developer Guide iBATIS Data Mapper 2.0

<resultMap id=”resultMapName” class=”some.domain.Class”
 [extends=”parent-resultMap”]
 [groupBy=“some property list”]>

<result property=”propertyName” column=”COLUMN_NAME”
 [columnIndex=”1”] [javaType=”int”] [jdbcType=”NUMERIC”]
 [nullValue=”-999999”] [select=”someOtherStatement”]
 [resultMap=“someOtherResultMap”]
 [typeHandler=“com.mydomain.MyTypehandler”]
 />

<result ……/>
<result ……/>
<result ……/>

</resultMap>

The parts in [brackets] are optional. The resultMap itself has a id attribute that statements will use to refer
to it. The resultMap also has a class attribute that is the fully qualified (i.e. full package) name of a class or
a type alias. This class will be instantiated and populated based on the result mappings it contains. The
extends attribute can be optionally set to the name of another resultMap upon which to base a resultMap.
This is similar to extending a class in Java, all properties of the super resultMap will be included as part of
the sub resultMap. The properties of the super resultMap are always inserted before the sub resultMap
properties and the parent resultMap must be defined before the child. The classes for the super/sub
resultMaps need not be the same, nor do they need to be related at all (they can each use any class).

The resultMap element also supports the attribute groupBy. The groupBy attribute is used to specify a list
of properties in this resultMap that are used to identify unique rows in the returned result set. Rows with
equal values for the specified properties will only generate one result object. Use groupBy in combination
with nested resultMaps to solve the N+1 query problem (see following discussion for examples).

The resultMap can contain any number of result mappings that map JavaBean properties to the columns of a
ResultSet. These property mappings will be applied in the order that they are defined in the document. The
associated class must be a JavaBeans compliant class with appropriate get/set methods for each of the
properties, a Map or XML.

Note! The columns will be read explicitly in the order specified in the Result Map (this comes in handy for
some poorly written JDBC drivers).

The next few sections describe the attributes of the result elements:

property

The property attribute of the result map property is the name of a JavaBeans property (get method) of the
result object that will be returned by the mapped statement. The name can be used more than once
depending on the number of times it is needed to populate the results.

column

The column attribute value is the name of the column in the ResultSet from which the value will be used to
populate the property.

columnIndex

As an optional (minimal) performance enhancement, the columnIndex attribute value is the index of the
column in the ResultSet from which the value will be used to populate the JavaBeans property. This is not
likely needed in 99% of applications and sacrifices maintainability and readability for speed. Some JDBC
drivers may not realize any performance benefit, while others will speed up dramatically.

http://ibatis.apache.org by Clinton Begin

34

Developer Guide iBATIS Data Mapper 2.0

jdbcType

The jdbcType attribute is used to explicitly specify the database column type of the ResultSet column that
will be used to populate the JavaBean property. Although result maps do not have the same difficulties with
null values, specifying the type can be useful for certain mapping types such as Date properties. Because
Java only has one Date value type and SQL databases may have many (usually at least 3), specifying the
date may become necessary in some cases to ensure that dates (or other types) are set correctly. Similarly,
String types may be populated by a VARCHAR, CHAR or CLOB, so specifying the type might be needed
in those cases too (driver dependent).

javaType

The javaType attribute is used to explicitly specify the Java property type of the property to be set.
Normally this can be derived from a JavaBeans property through reflection, but certain mappings such as
Map and XML mappings cannot provide the type to the framework. If the javaType is not set and the
framework cannot otherwise determine the type, the type is assumed to be Object.

nullValue

The nullValue attribute specifies the value to be used in place of a NULL value in the database. So if a
NULL is read from the ResultSet, the JavaBean property will be set to the value specified by the nullValue
attribute instead of NULL. The null attribute value can be any value, but must be appropriate for the
property type.

If your database has a NULLABLE column, but you want your application to represent NULL with a
constant value you can specify it in the result map as follows:

<resultMap id=”get-product-result” class=”com.ibatis.example.Product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>
<result property=”subCode” column=”PRD_SUB_CODE” nullValue=”-999”/>

</resultMap>

In the above example, if PRD_SUB_CODE is read as NULL, then the subCode property will be set to the
value of -999. This allows you to use a primitive type in your Java class to represent a NULLABLE column
in the database. Remember that if you want this to work for queries as well as updates/inserts, you must
also specify the nullValue in the parameter map (discussed earlier in this document).

select

The select attribute is used to describe a relationship between objects and automatically load complex (i.e.
user defined) property types. The value of the statement property must be the name of another mapped
statement. The value of the database column (the column attribute) that is defined in the same property
element as this statement attribute will be passed to the related mapped statement as the parameter.
Therefore the column must be a supported, primitive type. More information about supported primitive
types and complex property mappings/relationships is discussed later in this document.

resultMap

The resultMap attribute is used to describe a nested resultMap that can be reused in the result mapping.
This can be used in 1:1 relationships or 1:N relationships. If you expect a 1:N relationship, then the related
property should be a Collection (List, Set, Collection, etc.), and you should also specify the groupBy
attribute on the resultMap element to denote how iBATIS will group the rows. In 1:1 relationships, the
related property can be of any type and the groupBy attribute may, or may not, be specified. It is also
possible to use the groupBy attribute when some joins are 1:N and some are 1:1.

http://ibatis.apache.org by Clinton Begin

35

Developer Guide iBATIS Data Mapper 2.0

typeHandler

The typeHandler attribute is used to specify a custom type handler that will be used for this property instead
of the default iBATIS type system. If specified, this value should be the fully qualified name of a class that
implements either the com.ibatis.sqlmap.engine.type.TypeHandler interface or the
com.ibatis.sqlmap.client.extensions.TypeHandlerCallback interface. This value
overrides any global type handler that might otherwise be applied to this property. There is further detail on
custom type handlers later in this document.

Implicit Result Maps

If you have a very simple requirement that does not require the reuse of an explicitly defined resultMap,
there is a quick way to implicitly specify a result map by setting a resultClass attribute of a mapped
statement. The trick is that you must ensure that the result set returned has column names (or labels/aliases)
that match up with the write-able property names of your JavaBean. For example, if we consider the
Product class described above, we could create a mapped statement with an implicit result map as follows:

<select id=”getProduct” resultClass=”com.ibatis.example.Product”>
select
 PRD_ID as id,
 PRD_DESCRIPTION as description

 from PRODUCT
 where PRD_ID = #value#
</select>

The above mapped statement specifies a resultClass and declares aliases for each column that match the
JavaBean properties of the Product class. This is all that is required, no result map is needed. The tradeoff
here is that you don’t have an opportunity to specify a column type (normally not required) or a null value
(or any other property attributes). Since many databases are not case sensitive, implicit result maps are not
case sensitive either. So if your JavaBean had two properties, one named firstName and another named
firstname, these would be considered identical and you could not use an implicit result map (it would also
identify a potential problem with the design of the JavaBean class). Furthermore, there is some
performance overhead associated with auto-mapping via a resultClass. Accessing ResultSetMetaData can
be slow with some poorly written JDBC drivers.

Primitive Results (i.e. String, Integer, Boolean)

In addition to supporting JavaBeans compliant classes, Result Maps can conveniently populate a simple
Java type wrapper such as String, Integer, Boolean etc. Collections of primitive objects can also be
retrieved using the APIs described below (see queryForList()). Primitive types are mapped exactly the
same way as a JavaBean, with only one thing to keep in mind. A primitive type can only have one property
that can be named anything you like (usually “value” or “val”). For example, if we wanted to load just a list
of all product descriptions (Strings) instead of the entire Product class, the map would look like this:

<resultMap id=”get-product-result” class=”java.lang.String”>
<result property=”value” column=”PRD_DESCRIPTION”/>

</resultMap>

A simpler approach is to simply use a result class in a mapped statement (make note of the column alias
“value” using the “as” keyword):

<select id=”getProductCount” resultClass=”java.lang.Integer”>
select count(1) as value
from PRODUCT

</select>

http://ibatis.apache.org by Clinton Begin

36

Developer Guide iBATIS Data Mapper 2.0

Map Results

Result Maps can also conveniently populate a Map instance such as HashMap or TreeMap. Collections of
such objects (e.g. Lists of Maps) can also be retrieved using the APIs described below (see queryForList()).
Map types are mapped exactly the same way as a JavaBean, but instead of setting JavaBeans properties, the
keys of the Map are set to reference the values for the corresponding mapped columns. For example, if we
wanted to load the values of a product quickly into a Map, we could do the following:

<resultMap id=”get-product-result” class=”java.util.HashMap”>
<result property=”id” column=”PRD_ID”/>
<result property=”code” column=”PRD_CODE”/>
<result property=”description” column=”PRD_DESCRIPTION”/>
<result property=”suggestedPrice” column=”PRD_SUGGESTED_PRICE”/>

</resultMap>

In the example above, an instance of HashMap would be created and populated with the Product data. The
property name attributes (e.g. “id”) would be the keys of the HashMap, and the values of the mapped
columns would be the values in the HashMap.

Of course, you can also use an implicit result map with a Map type. For example:

<select id=”getProductCount” resultClass=”java.util.HashMap”>
select * from PRODUCT

</select>

The above would basically give you a Map representation of the returned ResultSet.

Complex Properties (i.e. a property of a class defined by the user)

It is possible to automatically populate properties of complex types (classes created by the user) by
associating a resultMap property with a mapped statement that knows how to load the appropriate data and
class. In the database the data is usually represented via a 1:1 relationship, or a 1:M relationship where the
class that holds the complex property is from the “many side” of the relationship and the property itself is
from the “one side” of the relationship. Consider the following example:

<resultMap id=”get-product-result” class=”com.ibatis.example.Product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>
<result property=”category” column=”PRD_CAT_ID” select=”getCategory”/>

</resultMap>

<resultMap id=”get-category-result” class=”com.ibatis.example.Category”>
<result property=”id” column=”CAT_ID”/>
<result property=”description” column=”CAT_DESCRIPTION”/>

</resultMap>

<select id=”getProduct” parameterClass=”int” resultMap=”get-product-result”>
select * from PRODUCT where PRD_ID = #value#

</select>

<select id=”getCategory” parameterClass=”int” resultMap=”get-category-result”>
select * from CATEGORY where CAT_ID = #value#

</select>

In the above example, an instance of Product has an property called category of type Category. Since
category is a complex user type (i.e. a user defined class), JDBC does not have the means to populate it. By
associating another mapped statement with the property mapping, we are providing enough information for
the SQL Map engine to populate it appropriately. Upon executing getProduct, the get-product-result
Result Map will call getCategory using the value returned in the PRD_CAT_ID column. The get-category-

http://ibatis.apache.org by Clinton Begin

37

Developer Guide iBATIS Data Mapper 2.0

result Result Map will instantiate a Category and populate it. The whole Category instance then gets set
into the Product’s category property.

Avoiding N+1 Selects (1:1)

The problem with the solution above is that whenever you load a Product, two SQL statements are actually
being run (one for the Product and one for the Category). This problem seems trivial when loading a single
Product, but if you were to run a query that loaded ten (10) Products, a separate query would be run for
each Product to load its associated category. This results in eleven (11) queries total: one for the list of
Products and one for each Product returned to load each related Category (N+1 or in this case 10+1=11).

The solution is to use a join and nested property mappings instead of a separate select statement. Here’s an
example using the same situation as above (Products and Categories):

<resultMap id=”get-product-result” class=”com.ibatis.example.Product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>
<result property=”category.id” column=”CAT_ID” />
<result property=”category.description” column=”CAT_DESCRIPTION” />

</resultMap>

<select id=”getProduct” parameterClass=”int” resultMap=”get-product-result”>
select *
from PRODUCT, CATEGORY
where PRD_CAT_ID=CAT_ID
and PRD_ID = #value#

</select>

In iBATIS versions 2.2.0 and above, you can also reuse a result map in a 1:1 query instead of repeating the
columns. An example of this usage is as follows

<resultMap id=”get-product-result” class=”com.ibatis.example.Product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>
<result property=”category” resultMap=“get-category-result” />

</resultMap>

<resultMap id=”get-category-result” class=”com.ibatis.example.Category”>
<result property=”id” column=”CAT_ID” />
<result property=”description” column=”CAT_DESCRIPTION” />

</resultMap>

<select id=”getProduct” parameterClass=”int” resultMap=”get-product-result”>
select *
from PRODUCT, CATEGORY
where PRD_CAT_ID=CAT_ID
and PRD_ID = #value#

</select>

Lazy Loading vs. Joins (1:1)

It’s important to note that using a join is not always better. If you are in a situation where it is rare to access
the related object (e.g. the category property of the Product class) then it might actually be faster to avoid
the join and the unnecessary loading of all category properties. This is especially true for database designs
that involve outer joins or nullable and/or non-indexed columns. In these situations it might be better to use
the sub-select solution with the lazy loading and bytecode enhancement options enabled (see SQL Map
Config settings). The general rule of thumb is: use the join if you’re more likely going to access the
associated properties than not. Otherwise, only use it if lazy loading is not an option.

http://ibatis.apache.org by Clinton Begin

38

Developer Guide iBATIS Data Mapper 2.0

If you’re having trouble deciding which way to go, don’t worry. No matter which way you go, you can
always change it without impacting your Java code. The two examples above would result in exactly the
same object graph and are loaded using the exact same method call. The only consideration is that if you
were to enable caching, then the using the separate select (not the join) solution could result in a cached
instance being returned. But more often than not, that won’t cause a problem (your app shouldn’t be
dependent on instance level equality i.e. “==”).

Complex Collection Properties

It is also possible to load properties that represent lists of complex objects. In the database the data would
be represented by a M:M relationship, or a 1:M relationship where the class containing the list is on the
“one side” of the relationship and the objects in the list are on the “many side”. To load a List of objects,
there is no change to the statement (see example above). The only difference required to cause the SQL
Map framework to load the property as a List is that the property on the business object must be of type
java.util.List or java.util.Collection. For example, if a Category has a List of Product instances, the
mapping would look like this (assume Category has a property called “productList” of type java.util.List):

<resultMap id=”get-category-result” class=”com.ibatis.example.Category”>
<result property=”id” column=”CAT_ID”/>
<result property=”description” column=”CAT_DESCRIPTION”/>
<result property=”productList” column=”CAT_ID” select=” getProductsByCatId”/>

</resultMap>

<resultMap id=”get-product-result” class=”com.ibatis.example.Product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>

</resultMap>

<select id=”getCategory” parameterClass=”int” resultMap=”get-category-result”>
select * from CATEGORY where CAT_ID = #value#

</select>

<select id=”getProductsByCatId” parameterClass=”int” resultMap=”get-product-result”>
select * from PRODUCT where PRD_CAT_ID = #value#

</select>

http://ibatis.apache.org by Clinton Begin

39

Developer Guide iBATIS Data Mapper 2.0

Avoiding N+1 Selects (1:M and M:N)

This is similar to the 1:1 situation above, but is of even greater concern due to the potentially large amount
of data involved. The problem with the solution above is that whenever you load a Category, two SQL
statements are actually being run (one for the Category and one for the list of associated Products). This
problem seems trivial when loading a single Category, but if you were to run a query that loaded ten (10)
Categories, a separate query would be run for each Category to load its associated list of Products. This
results in eleven (11) queries total: one for the list of Categories and one for each Category returned to load
each related list of Products (N+1 or in this case 10+1=11). To make this situation worse, we’re dealing
with potentially large lists of data.

1:N & M:N Solution

iBATIS fully solves the N+1 selects solution. Here is an example:

<sqlMap namespace="ProductCategory">

<resultMap id=”categoryResult” class=”com.ibatis.example.Category” groupBy=”id”>
<result property=”id” column=”CAT_ID”/>
<result property=”description” column=”CAT_DESCRIPTION”/>
<result property=”productList” resultMap=”ProductCategory.productResult”/>

</resultMap>

<resultMap id=”productResult” class=”com.ibatis.example.Product”>
<result property=”id” column=”PRD_ID”/>
<result property=”description” column=”PRD_DESCRIPTION”/>

</resultMap>

<select id=”getCategory” parameterClass=”int” resultMap=”categoryResult”>
select C.CAT_ID, C.CAT_DESCRIPTION, P.PRD_ID, P.PRD_DESCRIPTION
from CATEGORY C
left outer join PRODUCT P
on C.CAT_ID = P.PRD_CAT_ID
where CAT_ID = #value#

</select>
</sqlMap>

When you call...

List myList = queryForList("ProductCategory.getCategory", new Integer(1002));

...the main query is executed, and the results are stored in the myList variable as beans of type
"com.ibatis.example.Category". Each object in that List will have a "productList" property that is also a List
populated from the same query, but using the "productResult" result map to populate the beans in the child
list. So, you end up with a list containing sub-lists, and only one database query is executed.

The important items here are the...

groupBy="id"

...attribute and the...

<result property="productList" resultMap="ProductCategory.productResult"/>

...property mapping in the "categoryResult" result map. One other important detail is that the result mapping
for the productList property is namespace aware - had it been simply "productResult" it would not work.

Using this approach, you can solve any N+1 problem of any depth or breadth.

http://ibatis.apache.org by Clinton Begin

40

Developer Guide iBATIS Data Mapper 2.0

Important Notes: Combining the groupBy behavior with the queryForPaginatedList() API is undefined
behavior and is likely to return different results than you expect. Please do not attempt to combine these
two ideas. If you are using groupBy, you should always use the queryForList or queryForObject methods.

The nested property can be any implementation of java.util.Collection, but the getter and setter for the
property should be a simple and just provide access to the internal attribute. iBATIS will repeatedly call the
get method to access the property, and then call the property's add() method as it is processing the result set.
Do not try to do anything out of the ordinary with the getters and setters (like trying to wrap an internal
array in a List) – this will likely cause iBATIS to fail. There is a common misconception that iBATIS
somehow batches up the objects and calls the set method just one time. This is not the case – iBATIS only
calls the set method if the get method returns null – in which case iBATIS will create a default
implementation of the property and sets the new object into the result object. The newly created object will
always be empty – because iBATIS will then call the get method to obtain the property property and call the
add method.

Lazy Loading vs. Joins (1:M and M:N)

As with the 1:1 situation described previously, it’s important to note that using a join is not always better.
This is even more true for collection properties than it was for individual value properties due to the greater
amount of data. If you are in a situation where it is rare to access the related object (e.g. the productList
property of the Category class) then it might actually be faster to avoid the join and the unnecessary loading
of the list of products. This is especially true for database designs that involve outer joins or nullable and/or
non-indexed columns. In these situations it might be better to use the sub-select solution with the lazy
loading and bytecode enhancement options enabled (see SQL Map Config settings). The general rule of
thumb is: use the join if you’re more likely going to access the associated properties than not. Otherwise,
only use it if lazy loading is not an option.

As mentioned earlier, if you’re having trouble deciding which way to go, don’t worry. No matter which
way you go, you can always change it without impacting your Java code. The two examples above would
result in exactly the same object graph and are loaded using the exact same method call. The only
consideration is that if you were to enable caching, then the using the separate select (not the join) solution
could result in a cached instance being returned. But more often than not, that won’t cause a problem (your
app shouldn’t be dependent on instance level equality i.e. “==”).

Composite Keys or Multiple Complex Parameters Properties

You might have noticed that in the above examples there is only a single key being used as specified in the
resultMap by the column attribute. This would suggest that only a single column can be associated to a
related mapped statement. However, there is an alternate syntax that allows multiple columns to be passed
to the related mapped statement. This comes in handy for situations where a composite key relationship
exists, or even if you simply want to use a parameter of some name other than #value#. The alternate syntax
for the column attribute is simply {param1=column1, param2=column2, …, paramN=columnN}. Consider
the example below where the PAYMENT table is keyed by both Customer ID and Order ID:

<resultMap id=”get-order-result” class=”com.ibatis.example.Order”>
<result property=”id” column=”ORD_ID”/>
<result property=”customerId” column=”ORD_CST_ID”/>
…
<result property=”payments” column=”{itemId=ORD_ID, custId=ORD_CST_ID}”

 select=”getOrderPayments”/>
</resultMap>

<select id=”getOrderPayments” resultMap=”get-payment-result”>
select * from PAYMENT
where PAY_ORD_ID = #itemId#
and PAY_CST_ID = #custId#

</select>

http://ibatis.apache.org by Clinton Begin

41

Developer Guide iBATIS Data Mapper 2.0

Optionally you can just specify the column names as long as they’re in the same order as the parameters.
For example:

 {ORD_ID, ORD_CST_ID}

As usual, this is a slight performance gain with an impact on readability and maintainability.

Important! Currently the SQL Map framework does not automatically resolve circular relationships. Be
aware of this when implementing parent/child relationships (trees). An easy workaround is to simply define
a second result map for one of the cases that does not load the parent object (or vice versa), or use a join as
described in the “N+1 avoidance” solutions.

Note! Some JDBC drivers (e.g. PointBase Embedded) do not support multiple ResultSets (per connection)
open at the same time. Such drivers will not work with complex object mappings because the SQL Map
engine requires multiple ResultSet connections. Again, using a join instead can resolve this.

Note! Result Map names are always local to the SQL Map XML file that they are defined in. You can
refer to a Result Map in another SQL Map XML file by prefixing the name of the Result Map with the
name of the SQL Map (set in the <sqlMap> root tag).

If you are using the Microsoft SQL Server 2000 Driver for JDBC you may
need to add SelectMethod=Cursor to the connection url in order
to execute multiple statements while in manual transaction mode (see
MS Knowledge Base Article 313181:
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181).

http://ibatis.apache.org by Clinton Begin

42

http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181

Developer Guide iBATIS Data Mapper 2.0

Supported Types for Parameter Maps and Result Maps

The Java types supported by the iBATIS framework for parameters and results are as follows:

Java Type JavaBean/Map
Property Mapping

Result Class /
Parameter Class***

Type Alias**

boolean YES NO boolean
java.lang.Boolean YES YES boolean
byte YES NO byte
java.lang.Byte YES YES byte
short YES NO short
java.lang.Short YES YES short
int YES NO int/integer
java.lang.Integer YES YES int/integer
long YES NO long
java.lang.Long YES YES long
float YES NO float
java.lang.Float YES YES float
double YES NO double
java.lang.Double YES YES double
java.lang.String YES YES string
java.util.Date YES YES date
java.math.BigDecimal YES YES decimal
* java.sql.Date YES YES N/A
* java.sql.Time YES YES N/A
* java.sql.Timestamp YES YES N/A

Note that type aliases are case sensitive as of version 2.2.0. So type aliases “string”, “String”, “StrinG” all
map to the java type “java.lang.String”.

* The use of java.sql. date types is discouraged. It is a best practice to use java.util.Date instead.

** .Type Aliases can be used in place of the full class name when specifying parameter or result classes.

*** Primitive types such as int, boolean and float cannot be directly supported as primitive types, as the
iBATIS Database Layer is a fully Object Oriented approach. Therefore all parameters and results must be
an Object at their highest level. Incidentally the autoboxing feature of JDK 1.5 will allow these primitives
to be used as well.

http://ibatis.apache.org by Clinton Begin

43

Developer Guide iBATIS Data Mapper 2.0

Creating custom Type Handlers

Type support can be extended in iBATIS through the use of the TypeHandler or the TypeHandlerCallback
interface. The TypeHandlerCallback interface is simpler to implement, so we recommed using it over the
more complex TypeHandler interface. To create your own type handler you need to create a class that
implements the TypeHandlerCallback. Using a custom type handler you can extend the framework to
handle types that are not supported, or handle supported types in a different way. For example, you might
use a custom type handler to implement proprietary BLOB support (e.g. Oracle), or you might use it to
handle booleans using "Y" and "N" instead of the more typical 0/1.

Here's a simple example of a boolean handler that uses "Yes" and "No":

 public class YesNoBoolTypeHandlerCallback implements TypeHandlerCallback {

 private static final String YES = "Y";
 private static final String NO = "N";

 public Object getResult(ResultGetter getter)
 throws SQLException {
 String s = getter.getString();
 if (YES.equalsIgnoreCase(s)) {
 return new Boolean (true);
 } else if (NO.equalsIgnoreCase(s)) {
 return new Boolean (false);
 } else {
 throw new SQLException (
 "Unexpected value " + s + " found where " + YES + " or " + NO + " was expected.");
 }
 }

 public void setParameter(ParameterSetter setter, Object parameter)
 throws SQLException {
 boolean b = ((Boolean)parameter).booleanValue();
 if (b) {
 setter.setString(YES);
 } else {
 setter.setString(NO);
 }
 }

 public Object valueOf(String s) {
 if (YES.equalsIgnoreCase(s)) {
 return new Boolean (true);
 } else {
 return new Boolean (false);
 }
 }

In order to declare these types for use in iBATIS you use the following syntax in your sqlMapConfig.xml:

<typeHandler
 javaType="boolean"
 jdbcType=”VARCHAR”
 callback="org.apache.ibatis.sqlmap.extensions.YesNoBoolTypeHandlerCallback"/>

After this iBATIS will know to handle translations between the the stated java type and jdbc type with the
particular type handler callback that was written. Optionally, you can also specify a type handler for
individual properties by specifying the type handler on the <result> mapping, or with an explicit or inline
parameter map.

http://ibatis.apache.org by Clinton Begin

44

Developer Guide iBATIS Data Mapper 2.0

Caching Mapped Statement Results

The results from a Query Mapped Statement can be cached simply by specifying the cacheModel parameter
in the statement tag (seen above). A cache model is a configured cache that is defined within your SQL
map. Cache models are configured using the cacheModel element as follows:

<cacheModel id="product-cache" type ="LRU" readOnly=”true” serialize=”false”>
 <flushInterval hours="24"/>
 <flushOnExecute statement="insertProduct"/>
 <flushOnExecute statement="updateProduct"/>
 <flushOnExecute statement="deleteProduct"/>
 <property name=”cache-size” value=”1000” />
</cacheModel>

The cache model above will create an instance of a cache named “product-cache” that uses a Least Recently
Used (LRU) implementation. The value of the type attribute is either a fully qualified class name, or an
alias for one of the included implementations (see below). Based on the flush elements specified within the
cache model, this cache will be flushed every 24 hours. There can be only one flush interval element and it
can be set using hours, minutes, seconds or milliseconds. In addition the cache will be completely flushed
whenever the insertProduct, updateProduct, or deleteProduct mapped statements are executed. There can
be any number of “flush on execute” elements specified for a cache. Some cache implementations may
need additional properties, such as the ‘cache-size’ property demonstrated above. In the case of the LRU
cache, the size determines the number of entries to store in the cache. Once a cache model is configured,
you can specify the cache model to be used by a mapped statement, for example:

<select id=”getProductList” cacheModel=”product-cache”>
 select * from PRODUCT where PRD_CAT_ID = #value#
</select>

Read-Only vs. Read/Write

The framework supports both read-only and read/write caches. Read-only caches are shared among all
users and therefore offer greater performance benefit. However, objects read from a read-only cache should
not be modified. Instead, a new object should be read from the database (or a read/write cache) for
updating. On the other hand, if there is an intention to use objects for retrieval and modification, a
read/write cache is recommended (i.e. required). To use a read-only cache, set readOnly=”true” on the
cache model element. To use a read/write cache, set readOnly=”false”. The default is read-only (true).

Serializable Read/Write Caches

As you may agree, caching per-session as described above may offer little benefit to global application
performance. Another type of read/write cache that can offer a performance benefit to the entire application
(i.e. not just per session) is a serializable read/write cache. This cache will return different instances
(copies) of the cached object to each session. Therefore each session can safely modify the instance
returned. Realize the difference in semantics here, usually you would expect the same instance to be
returned from a cache, but in this case you’ll get a different one. Also note that every object stored by a
serializable cache must be serializable. This means that you will have difficulty using both lazy loading
features combined with a serializable cache, because lazy proxies are not serializable. The best way to
figure out what combination of caching, lazy loading and table joining is simply to try it out. To use a
serializable cache, set readOnly=”false” and serialize=”true”. By default cache models are read-only and
non-serializable. Read-only caches will not be serialized (there’s no benefit).

http://ibatis.apache.org by Clinton Begin

45

Developer Guide iBATIS Data Mapper 2.0

Cache Types

The cache model uses a pluggable framework for supporting different types of caches. The implementation
is specified in the type attribute of the cacheModel element (as discussed above). The class name specified
must be an implementation of the CacheController interface, or one of the four aliases discussed below.
Further configuration parameters can be passed to the implementation via the property elements contained
within the body of the cacheModel. Currently there are 4 implementations included with the distribution.
These are as follows:

“MEMORY” (com.ibatis.db.sqlmap.cache.memory.MemoryCacheController)

The MEMORY cache implementation uses reference types to manage the cache behavior. That is, the
garbage collector effectively determines what stays in the cache or otherwise. The MEMORY cache is a
good choice for applications that don’t have an identifiable pattern of object reuse, or applications where
memory is scarce (it will do what it can).

The MEMORY implementation is configured as follows:

<cacheModel id="product-cache" type="MEMORY">
<flushInterval hours="24"/>
<flushOnExecute statement="insertProduct"/>
<flushOnExecute statement="updateProduct"/>
<flushOnExecute statement="deleteProduct"/>
<property name=”reference-type” value=”WEAK” />

</cacheModel>

Only a single property is recognized by the MEMORY cache implementation. This property, named
‘reference-type’ must be set to a value of STRONG, SOFT or WEAK. These values correspond to various
memory reference types available in the JVM.

The following table describes the different reference types that can be used for a MEMORY cache. To
better understand the topic of reference types, please see the JDK documentation for java.lang.ref for more
information about “reachability”.

WEAK
(default)

This reference type is probably the best choice in most cases and is the default if the
reference-type is not specified. It will increase performance for popular results, but it will
absolutely release the memory to be used in allocating other objects, assuming that the
results are not currently in use.

SOFT This reference type will reduce the likelihood of running out of memory in case the results
are not currently in use and the memory is needed for other objects. However, this is not
the most aggressive reference type in that regard and memory still might be allocated and
made unavailable for more important objects.

STRONG This reference type will guarantee that the results stay in memory until the cache is
explicitly flushed (e.g. by time interval or flush on execute). This is ideal for results that
are: 1) very small, 2) absolutely static, and 3) used very often. The advantage is that
performance will be very good for this particular query. The disadvantage is that if the
memory used by these results is needed, then it will not be released to make room for other
objects (possibly more important objects).

http://ibatis.apache.org by Clinton Begin

46

Developer Guide iBATIS Data Mapper 2.0

“LRU” (com.ibatis.db.sqlmap.cache.lru.LruCacheController)

The LRU cache implementation uses an Least Recently Used algorithm to determines how objects are
automatically removed from the cache. When the cache becomes over full, the object that was accessed
least recently will be removed from the cache. This way, if there is a particular object that is often referred
to, it will stay in the cache with the least chance of being removed. The LRU cache makes a good choice
for applications that have patterns of usage where certain objects may be popular to one or more users over
a longer period of time (e.g. navigating back and forth between paginated lists, popular search keys etc.).

The LRU implementation is configured as follows:

<cacheModel id="product-cache" type="LRU">
<flushInterval hours="24"/>
<flushOnExecute statement="insertProduct"/>
<flushOnExecute statement="updateProduct"/>
<flushOnExecute statement="deleteProduct"/>
<property name=”size” value=”1000” />

</cacheModel>

Only a single property is recognized by the LRU cache implementation. This property, named ‘size’ must
be set to an integer value representing the maximum number of objects to hold in the cache at once. An
important thing to remember here is that an object can be anything from a single String instance to an
ArrayList of JavaBeans. So take care not to store too much in your cache and risk running out of memory!

“FIFO” (com.ibatis.db.sqlmap.cache.fifo.FifoCacheController)

The FIFO cache implementation uses an First In First Out algorithm to determines how objects are
automatically removed from the cache. When the cache becomes over full, the oldest object will be
removed from the cache. The FIFO cache is good for usage patterns where a particular query will be
referenced a few times in quick succession, but then possibly not for some time later.

The FIFO implementation is configured as follows:

<cacheModel id="product-cache" type="FIFO">
<flushInterval hours="24"/>
<flushOnExecute statement="insertProduct"/>
<flushOnExecute statement="updateProduct"/>
<flushOnExecute statement="deleteProduct"/>
<property name=”size” value=”1000” />

</cacheModel>

Only a single property is recognized by the FIFO cache implementation. This property, named ‘size’ must
be set to an integer value representing the maximum number of objects to hold in the cache at once. An
important thing to remember here is that an object can be anything from a single String instance to an
ArrayList of JavaBeans. So take care not to store too much in your cache and risk running out of memory!

http://ibatis.apache.org by Clinton Begin

47

Developer Guide iBATIS Data Mapper 2.0

“OSCACHE” (com.ibatis.db.sqlmap.cache.oscache.OSCacheController)

The OSCACHE cache implementation is a plugin for the OSCache 2.0 caching engine. It is highly
configurable, distributable and flexible.

The OSCACHE implementation is configured as follows:

<cacheModel id="product-cache" type="OSCACHE">
<flushInterval hours="24"/>
<flushOnExecute statement="insertProduct"/>
<flushOnExecute statement="updateProduct"/>
<flushOnExecute statement="deleteProduct"/>

</cacheModel>

The OSCACHE implementation does not use any property elements for configuration. Instead, the
OSCache instance is configured using the standard oscache.properties file which should be located in the
root of your classpath. Within that file you can configure algorithms (much like those discussed above),
cache size, persistence approach (memory, file, ...), and clustering.

Please refer to the OSCache documentation for more information. OSCache and its documentation can be
found at the following Open Symphony website:

http://www.opensymphony.com/oscache/

http://ibatis.apache.org by Clinton Begin

48

Developer Guide iBATIS Data Mapper 2.0

Dynamic Mapped Statements

A very common problem with working directly with JDBC is dynamic SQL. It is normally very difficult to
work with SQL statements that change not only the values of parameters, but which parameters and columns
are included at all. The typical solution is usually a mess of conditional if-else statements and horrid string
concatenations. The desired result is often a query by example, where a query can be built to find objects
that are similar to the example object. The Data Mapper API provides a relatively elegant solution that can
be applied to any mapped statement element. Here is a simple example:

<select id="dynamicGetAccountList"
 cacheModel="account-cache"
 resultMap="account-result" >

 select * from ACCOUNT

 <isGreaterThan prepend="and" property="id" compareValue="0">
 where ACC_ID = #id#
 </isGreaterThan>

 order by ACC_LAST_NAME

</select>

In the above example, there are two possible statements that could be created depending on the state of the
“id” property of the parameter bean. If the id parameter is greater than 0, then the statement will be created
as follows:

 select * from ACCOUNT where ACC_ID = ?

Or if the id parameter is 0 or less, the statement will look as follows.

 select * from ACCOUNT

The immediate usefulness of this might not become apparent until a more complex situation is encountered.
For example, the following is a somewhat more complex example.

 <select id="dynamicGetAccountList"
 resultMap="account-result" >
 select * from ACCOUNT
 <dynamic prepend="WHERE">
 <isNotNull prepend="AND" property="firstName"
 open=”(“ close=”)”>
 ACC_FIRST_NAME = #firstName#
 <isNotNull prepend="OR" property="lastName">
 ACC_LAST_NAME = #lastName#
 </isNotNull>
 </isNotNull>
 <isNotNull prepend="AND" property="emailAddress">
 ACC_EMAIL like #emailAddress#
 </isNotNull>
 <isGreaterThan prepend="AND" property="id" compareValue="0">
 ACC_ID = #id#
 </isGreaterThan>
 </dynamic>
 order by ACC_LAST_NAME
 </select>

http://ibatis.apache.org by Clinton Begin

49

Developer Guide iBATIS Data Mapper 2.0

Depending on the situation, there could be as many as 16 different SQL queries generated from the above
dynamic statement. To code the if-else structures and string concatenations could get quite messy and
require hundreds of lines of code.

Using dynamic statements is as simple as inserting some conditional tags around the dynamic parts of your
SQL. For example:

 <select id="someName"
 resultMap="account-result" >
 select * from ACCOUNT
 <dynamic prepend="where">
 <isGreaterThan prepend="and" property="id" compareValue="0">
 ACC_ID = #id#
 </isGreaterThan>
 <isNotNull prepend=”and" property="lastName">
 ACC_LAST_NAME = #lastName#
 </isNotNull>
 </dynamic>
 order by ACC_LAST_NAME
 </select>

In the above statement, the <dynamic> element demarcates a section of the SQL that is dynamic. The
dynamic element is optional and provides a way to manage a prepend in cases where the prepend (e.g.
“WHERE”) should not be included unless the contained conditions append to the statement. The statement
section can contain any number of conditional elements (see below) that will determine whether a the
contained SQL code will be included in the statement. All of the conditional elements work based on the
state of the parameter object passed into the query. Both the dynamic element and the conditional elements
have a “prepend” attribute. The prepend attribute is a part of the code that is free to be overridden by the a
parent element’s prepend if necessary. In the above example the “where” prepend will override the first
true conditional prepend. This is necessary to ensure that the SQL statement is built properly. For
example, in the case of the first true condition, there is no need for the AND, and in fact it would break the
statement. The following sections describe the various kinds of elements, including Binary Conditionals,
Unary Conditionals and Iterate.

Dynamic Element

The dynamic tag is a simple tag that is meant only to wrap other dynamic sql elements and provide for a
way to attach an overall prepend, open or close to the resulting body content. When using this tag the
removeFirstPrepend attribute functionality is enforced. So, the first content producing nested tag will have
it's prepend removed.

Binary Conditional Attributes:
 prepend – the overridable SQL part that will be prepended to the statement (optional)
 open – the string with which to open the entire resulting body content (optional)
 close – the string with which to close the entire resulting body content (optional)

<dynamic> Wrapper tag that allows for an overall prepend, open and close.

Binary Conditional Elements

Binary conditional elements compare a property value to a static vale or another property value. If the
result is true, the body content is included in the SQL query.

Binary Conditional Attributes:
 prepend – the overridable SQL part that will be prepended to the statement (optional)
 property – the property to be compared (required)
 compareProperty – the other property to be compared (required or compareValue)
 compareValue – the value to be compared (required or compareProperty)

http://ibatis.apache.org by Clinton Begin

50

Developer Guide iBATIS Data Mapper 2.0

 removeFirstPrepend – removes the prepend of the first nested content producing tag (true|false, optional)
 open – the string with which to open the entire resulting body content (optional)
 close – the string with which to close the entire resulting body content (optional)

<isEqual> Checks the equality of a property and a value, or another property.
<isNotEqual> Checks the inequality of a property and a value, or another property.
<isGreaterThan> Checks if a property is greater than a value or another property.
<isGreaterEqual> Checks if a property is greater than or equal to a value or another property.
<isLessThan> Checks if a property is less than a value or another property.
<isLessEqual> Checks if a property is less than or equal to a value or another property.

Example Usage:

<isLessEqual prepend=”AND” property=”age” compareValue=”18”>
 ADOLESCENT = ‘TRUE’
</isLessEqual>

Unary Conditional Elements

Unary conditional elements check the state of a property for a specific condition.

Unary Conditional Attributes:
 prepend – the overridable SQL part that will be prepended to the statement (optional)
 property – the property to be checked (required)
 removeFirstPrepend – removes the prepend of the first nested content producing tag (true|false, optional)
 open – the string with which to open the entire resulting body content (optional)
 close – the string with which to close the entire resulting body content (optional)

<isPropertyAvailable> Checks if a property is available (i.e is a property of the parameter bean)
<isNotPropertyAvailable> Checks if a property is unavailable (i.e not a property of the parameter bean)
<isNull> Checks if a property is null.
<isNotNull> Checks if a property is not null.
<isEmpty> Checks to see if the value of a Collection, String or String.valueOf() property

is null or empty (“” or size() < 1).
<isNotEmpty> Checks to see if the value of a Collection, String or String.valueOf() property

is not null and not empty (“” or size() < 1).

Example Usage:

<isNotEmpty prepend=”AND” property=”firstName” >
 FIRST_NAME=#firstName#
</isNotEmpty>

http://ibatis.apache.org by Clinton Begin

51

Developer Guide iBATIS Data Mapper 2.0

Other Elements

Parameter Present: These elements check for parameter object existence.
Parameter Present Attributes:
 prepend – the overridable SQL part that will be prepended to the statement (optional)
 removeFirstPrepend – removes the prepend of the first nested content producing tag (true|false, optional)
 open – the string with which to open the entire resulting body content (optional)
 close – the string with which to close the entire resulting body content (optional)

<isParameterPresent> Checks to see if the parameter object is present (not null).
<isNotParameterPresent> Checks to see if the parameter object is not present (null).

Example Usage:

<isNotParameterPresent prepend=”AND”>
 EMPLOYEE_TYPE = ‘DEFAULT’
</isNotParameterPresent>

Iterate: This tag will iterate over a collection and repeat the body content for each item in a List
Iterate Attributes:
 prepend – the overridable SQL part that will be prepended to the statement (optional)
 property – a property of type java.util.Collection, or java.util.Iterator, or an array that is to be iterated
 over (optional – the parameter object is assumed to be a collection if the property is not specified.
 See below for more information.)
 open – the string with which to open the entire block of iterations, useful for brackets (optional)
 close – the string with which to close the entire block of iterations, useful for brackets (optional)
 conjunction – the string to be applied in between each iteration, useful for AND and OR (optional)
 removeFirstPrepend – removes the prepend of the first nested content producing tag
 (true|false|iterate, optional – see below for more information)

http://ibatis.apache.org by Clinton Begin

52

Developer Guide iBATIS Data Mapper 2.0

<iterate> Iterates over a property that is an implementation java.util.Collection, or
java.util.Iterator, or is an array.

Example Usage:

<iterate prepend=”AND” property=”userNameList”
 open=”(” close=”)” conjunction=”OR”>

 username=#userNameList[]#

</iterate>

It is also possible to use the iterate when the collection is passed in as a
parameter to your mapped statement.

Example Usage:

<iterate prepend=”AND” open=”(” close=”)” conjunction=”OR”>

 username=#[]#

</iterate>

Note: It is very important to include the square brackets[] at the end of the
property name when using the Iterate element. These brackets distinguish this
object as a collection to keep the parser from simply outputting the collection
as a string.

Further <iterate> tag usage notes:

Note that, in the first example, “userNameList[]” becomes an operator that refers to the current item in the
list. You can use this operator to select properties from list items like this:

<iterate prepend=”AND” property=”userList”
 open=”(” close=”)” conjunction=”OR”>

 firstname=#userList[].firstName# and
 lastname=#userList[].lastName#

</iterate>

As of iBATIS version 2.2.0, iterate tags can also be nested to create complex conditions. Here is an
example:

<dynamic prepend="where">
 <iterate property="orConditions" conjunction="or">
 (
 <iterate property="orConditions[].conditions"
 conjunction="and">
 $orConditions[].conditions[].condition$
 #orConditions[].conditions[].value#
 </iterate>
)
 </iterate>
</dynamic>

This assumes that the parameter object has a property “orConditions” that is a List of objects. And each of
the object in that List contains a List property called “conditions”. So we have Lists within Lists in the
parameter object.

http://ibatis.apache.org by Clinton Begin

53

Developer Guide iBATIS Data Mapper 2.0

Notice that the phrase “orConditions[].conditions[].condition” means “get the condition property from the
current element in the inner list, which is the conditions property of the current object in the outer loop.
There is no restriction to level of nesting iterate tags. Also, the “current item” operators can be used as
input to any of the other dynamic tags.

The removeFirstPrepend function with the <iterate> tag is somewhat different than the other tags. If you
specify true for removeFirstPrepend, then the first nested attribute that produces content will have its
prepend removed. This will happen once for the entire loop. This is the correct behavior in most
circumstances.

In some circumstances, it may be desirable to have the removeFirstPrepend function work for each iteration
of the loop, rather than just one time. In this case, specify iterate as the value for removeFirstPrepend. This
function is only available with iBATIS versions 2.2.0 and higher.

Simple Dynamic SQL Elements

Despite the power of the full Dynamic Mapped Statement API discussed above, sometimes you just need a
simple, small piece of your SQL to be dynamic. For this, SQL statements and statements can contain simple
dynamic SQL elements to help implement dynamic order by clauses, dynamic select columns or pretty
much any part of the SQL statement. The concept works much like inline parameter maps, but uses a
slightly different syntax. Consider the following example:

<select id=”getProduct” resultMap=”get-product-result”>
select * from PRODUCT order by $preferredOrder$

</select>

In the above example the preferredOrder dynamic element will be replaced by the value of the
preferredOrder property of the parameter object (just like a parameter map). The difference is that this is a
fundamental change to the SQL statement itself, which is much more serious than simply setting a
parameter value. A mistake made in a Dynamic SQL Element can introduce security, performance and
stability risks. Take care to do a lot of redundant checks to ensure that the simple dynamic SQL elements
are being used appropriately. Also, be mindful of your design, as there is potential for database specifics to
encroach on your business object model. For example, you may not want a column name intended for an
order by clause to end up as a property in your business object, or as a field value on your JSP page.

Simple dynamic elements can be included within statements and come in handy when there is a need to
modify the SQL statement itself. For example:

<select id=”getProduct” resultMap=”get-product-result”>
SELECT * FROM PRODUCT
<dynamic prepend=”WHERE”>
 <isNotEmpty property=”description”>
 PRD_DESCRIPTION $operator$ #description#
 </isNotEmpty>
</dynamic>

</select>

In the above example the operator property of the parameter object will be used to replace the $operator$
token. So if the operator property was equal to ‘like’ and the description property was equal to ‘%dog%’,
then the SQL statement generated would be:

SELECT * FROM PRODUCT WHERE PRD_DESCRIPTION LIKE ‘%dog%’

http://ibatis.apache.org by Clinton Begin

54

Developer Guide iBATIS Data Mapper 2.0

Programming with Data Mapper: The API

The SqlMapClient API is meant to be simple and minimal. It provides the programmer with the ability to
do four primary functions: configure an SQL Map, execute an SQL update (including insert and delete),
execute a query for a single object, and execute a query for a list of objects.

Configuration

Configuring an SQL Map is trivial once you have created your SQL Map XML definition files and SQL
Map configuration file (discussed above). SqlMapClient instances are built using SqlMapClientBuilder.
This class has overloaded static methods named buildSqlMap() that build and return an SqlMapClient
instance. The buildSqlMap() methods can read a Reader or an InputStream, and can optionally accept a
Properties object that can be used to give values to properties in the configuration files. Here are some
examples of using these methods:

String resource = “com/ibatis/example/sqlMap-config.xml”;
Reader reader = Resources.getResourceAsReader (resource);
SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMap(reader);

String resource = “com/ibatis/example/sqlMap-config.xml”;
InputStream inputStream = Resources.getResourceAsStream (resource);
SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMap(inputStream);

The differences in these methods primarily relates to character encoding and internationalization issues.
See the section on internationalization for more details.

Transactions

By default, calling any execute method on SqlMapClient instance (e.g. queryForObject() or insert()) will
auto-commit or auto-rollback. This means that each call to any execution method will be a single unit of
work. This is simple indeed, but not ideal if you have a number of statements that must execute as a single
unit of work (i.e. either succeed or fail as a group). This is where transactions come into play.

If you’re using Global Transactions (configured by the SQL Map configuration file), you can use auto-
commit and still achieve unit-of-work behavior. However, it still might be ideal for performance reasons to
demarcate transaction boundaries, as it reduces the traffic on the connection pool and database connection
initializations.

The SqlMapClient interface has methods that allow you to demarcate transactional boundaries. A
transaction can be started, committed or rolled back using the following methods on the SqlMapClient
interface:

 public void startTransaction () throws SQLException
 public void commitTransaction () throws SQLException
 public void endTransaction () throws SQLException

By starting a transaction you are retrieving a connection from the connection pool, and opening it to receive
SQL queries and updates.

An example of using transactions is as follows:

http://ibatis.apache.org by Clinton Begin

55

Developer Guide iBATIS Data Mapper 2.0

private Reader reader = new Resources.getResourceAsReader(
"com/ibatis/example/sqlMap-config.xml");

private SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMap(reader);

public updateItemDescription (String itemId, String newDescription)
 throws SQLException {
 try {
 sqlMap.startTransaction ();
 Item item = (Item) sqlMap.queryForObject ("getItem", itemId);
 item.setDescription (newDescription);
 sqlMap.update ("updateItem", item);
 sqlMap.commitTransaction ();
 } finally {
 sqlMap.endTransaction ();
 }
}

Notice how endTransaction() is called regardless of an error. This is an important step to ensure cleanup.
The rule is: if you call startTransaction() be absolutely certain to call endTransaction() (whether you
commit or not).

Note! Transactions cannot be nested. Calling .startTransaction() from the same thread more than once,
before calling commit() or rollback(), will cause an exception to be thrown. In other words, each thread can
have -at most- one transaction open, per SqlMapClient instance.

Note! SqlMapClient transactions use Java’s ThreadLocal store for storing transactional objects. This means
that each thread that calls startTransaction() will get a unique Connection object for their transaction. The
only way to return a connection to the DataSource (or close the connection) is to call commitTransaction()
or endTransaction(). Not doing so could cause your pool to run out of connections and lock up.

Automatic Transactions

Although using explicit transactions is very highly recommended, there is a simplified semantic that can be
used for simple requirements (generally read-only). If you do not explicitly demarcate transactions using
the startTransaction(), commitTransaction() and endTransaction() methods, they will all be called
automatically for you whenever you execute a statement outside of a transactional block as demonstrated in
the above. For example:

private Reader reader = new Resources.getResourceAsReader(
"com/ibatis/example/sqlMap-config.xml");

private SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMap(reader);

public updateItemDescription (String itemId, String newDescription)
 throws SQLException {
 try {
 Item item = (Item) sqlMap.queryForObject ("getItem", itemId);
 item.setDescription (“TX1”);
 // No transaction demarcated, so transaction will be automatic (implied)
 sqlMap.update ("updateItem", item);
 item.setDescription (newDescription);
 item.setDescription (“TX2”);
 // No transaction demarcated, so transaction will be automatic (implied)
 sqlMap.update("updateItem", item);
 } catch (SQLException e) {
 throw (SQLException) e.fillInStackTrace();
 }
}

Note! Be very careful using automatic transactions, for although they can be attractive, you will run into
trouble if your unit of work requires more than a single update to the database. In the above example, if the

http://ibatis.apache.org by Clinton Begin

56

Developer Guide iBATIS Data Mapper 2.0

second call to “updateItem” fails, the item description will still be updated with the first new description of
“TX1” (i.e. this is not transactional behavior).

Global (DISTRIBUTED) Transactions

The Data Mapper framework supports global transactions as well. Global transactions, also known as
distributed transactions, will allow you to update multiple databases (or other JTA compliant resources) in
the same unit of work (i.e. updates to multiple datasources can succeed or fail as a group).

External/Programmatic Global Transactions

You can choose to manage global transactions externally, either programmatically (coded by hand), or by
implementing another framework such as the very common EJB. Using EJBs you can declaratively
demarcate (set the boundaries of) a transaction in an EJB deployment descriptor. Further discussion of how
this is done is beyond the scope of this document. To enable support external or programmatic global
transactions, you must set the <transactionManager> type attribute to “EXTERNAL” in your SQL Map
configuration file (see above). When using externally controlled global transactions, the SQL Map
transaction control methods are somewhat redundant, because the begin, commit and rollback of
transactions will be controlled by the external transaction manager. However, there can be a performance
benefit to still demarcating your transactions using the SqlMapClient methods startTransaction(),
commitTransaction() and endTransaction() (vs. allowing an automatic transaction to started and committed
or rolled back). By continuing to use these methods, you will maintain a consistent programming paradigm,
as well as you will be able to reduce the number of requests for connections from the connection pool.
Further benefit is that in some cases you may need to change the order in which resources are closed
(commitTransaction() or endTransaction()) versus when the global transaction is committed. Different app
servers and transaction managers have different rules (unfortunately). Other than these simple
considerations, there are really no changes required to your SQL Map code to make use of a global
transaction.

Managed Global Transactions

The SQL Map framework can also manage global transactions for you. To enable support for managed
global transactions, you must set the <transactionManager> type attribute to “JTA” in your SQL Map
configuration file and set the “UserTransaction” property to the full JNDI name of where the SqlMapClient
instance will find the UserTransaction instance. See the <transactionManager> discussion above for full
configuration details.

Programming for global transactions is not much different, however there are some small considerations.
Here is an example:

 try {
 orderSqlMap.startTransaction();
 storeSqlMap.startTransaction();

 orderSqlMap.insertOrder(…);
 orderSqlMap.updateQuantity(…);

 storeSqlMap.commitTransaction();
 orderSqlMap.commitTransaction();
 } finally {
 try {
 storeSqlMap.endTransaction()
 } finally {
 orderSqlMap.endTransaction()
 }
 }

In this example, there are two SqlMapClient instances that we will assume are using two different
databases. The first SqlMapClient (orderSqlMap) that we use to start a transaction will also start the global

http://ibatis.apache.org by Clinton Begin

57

Developer Guide iBATIS Data Mapper 2.0

transaction. After that, all other activity is considered part of the global transaction until that same
SqlMapClient (orderSqlMap) calls commitTransaction() and endTransaction(), at which point the global
transaction is committed and all other work is considered done.

Warning! Although this seems simple, it is very important that you don’t overuse global (distributed)
transactions. There are performance implications, as well as additional complex configuration requirements
for your application server and database drivers. Although it looks easy, you might still experience some
difficulties. Remember, EJBs have a lot more industry support and tools to help you along, and you still
might be better off using Session EJBs for any work that requires distributed transactions. The JPetStore
example app found at ibatis.apache.org is an example usage of SQL Map global transactions.

Multi Threaded Programming

iBATIS supports multi threaded programming, but there are some considerations to be aware of.

The first, and foremost, consideration is that transactions must be entirely contained within a thread. Stated
another way, transactions cannot cross thread boundaries. For this reason, it is a good idea to think of
starting threads to complete entire units of work. It is generally not a good idea to have a pool of threads
waiting to start and execute transactions – unless you can guarantee thread affinity for each unit of work.

Another consideration is that there can only be one active transaction at a time in each thread. You can
write code that executes more than one transaction in a thread, but the transactions must be in sequence, and
not open at the same time. This is an example of multiple serial transactions in a thread:

try {
 sqlMap.startTransaction();
 // execute statements for the first transaction
 sqlMap.commitTransaction();
} finally {
 sqlMap.endTransaction();
}
try {
 sqlMap.startTransaction();
 // execute statements for the second transaction
 sqlMap.commitTransaction();
} finally {
 sqlMap.endTransaction();
}

The important thing is that only one transaction is active at a time in the thread. Of course, with automatic
transactions each statement is a different transaction.

iBATIS Classloading

(The information in this section is accurate with iBATIS versions 2.2.0 and later)

iBATIS uses methods in the class com.ibatis.common.resources.Resources class to load classes. For class
loading considerations, the most important method in this class is classForName(String). This method is at
the root of all class loading in iBATIS. By default, this method works as follows:

1. Try to load the class from the current thread's context class loader
2. If any error occurs, then try to load the class with Class.forName(String)

This method works well in most environments. If, for some reason, this method does not work in your
environment, you can specify a different class loader to use for all operations by calling the static method
Resources.setDefaultClassLoader(ClassLoader). If you supply a class loader with this method call, then
iBATIS will try to load all classes from the specified class loader (and will fall back to

http://ibatis.apache.org by Clinton Begin

58

Developer Guide iBATIS Data Mapper 2.0

Class.forName(String) in the event of errors). If you wish to supply a custom class loader, you should call
the method before any other operation in iBATIS.

Batches

If you have a great number of non-query (insert/update/delete) statements to execute, you might like to
execute them as a batch to minimize network traffic and allow the JDBC driver to perform additional
optimization (e.g. compression). Using batches is simple with the SQL Map API, simple methods allow
you to demarcate the boundaries of the batch:

try {
 sqlMap.startTransaction();
 sqlMap.startBatch();
 // … execute statements in between
 int rowsUpdated = sqlMap.executeBatch(); //optional
 sqlMap.commitTransaction();
} finally {
 sqlMap.endTransaction();
}

Upon calling executeBatch(), all batched statements will executed through the JDBC driver. Calling
executeBatch() is optional because the commit operation will execute the batch automatically if there is an
open batch. So you can call executeBatch() if you want to know the number of rows that were affected, or
you can skip it and just call commitTransaction().

If you have a large number of operations to perform in a batch, you might want to issue periodic commits
throughout the batch. For example, if you're inserting 1000 rows, you might want to commit every 100
rows to keep from creating huge transactions. If you would like to issue periodic commits it is important to
know that you should call startBatch() after each periodic commit – because the commit will execute and
end the batch. Here is an example:

try {
 int totalRows = 0;
 sqlMap.startTransaction();

 sqlMap.startBatch();
 // … insert 100 rows
 totalRows += sqlMap.executeBatch(); //optional
 sqlMap.commitTransaction();

 sqlMap.startBatch();
 // … insert 100 rows
 totalRows += sqlMap.executeBatch(); //optional
 sqlMap.commitTransaction();

 sqlMap.startBatch();
 // … insert 100 rows
 totalRows += sqlMap.executeBatch(); //optional
 sqlMap.commitTransaction();

 // etc.

} finally {
 sqlMap.endTransaction();
}

Important notes about batches:

http://ibatis.apache.org by Clinton Begin

59

Developer Guide iBATIS Data Mapper 2.0

1. A batch should ALWAYS be nested inside an explicit transaction. If you fail to use an explicit
transaction, then iBATIS will execute each statement individually as if you had never started a
batch.

2. You may execute any mapped statement within the batch demarcations. If you execute different
mapped statements (i.e. inserts, then updates), iBATIS will break the batch into “sub batches”
based on the generated SQL of the last statement executed. For example, consider the following
code:

try {
 sqlMap.startTransaction();
 sqlMap.startBatch();

 sqlMap.insert(“myInsert”, parameterObject1);
 sqlMap.insert(“myInsert”, parameterObject2);
 sqlMap.insert(“myInsert”, parameterObject3);
 sqlMap.insert(“myInsert”, parameterObject4);

 sqlMap.update(“myUpdate”, parameterObject5);
 sqlMap.update(“myUpdate”, parameterObject6);

 sqlMap.insert(“myInsert”, parameterObject7);
 sqlMap.insert(“myInsert”, parameterObject8);
 sqlMap.insert(“myInsert”, parameterObject9);

 sqlMap.executeBatch();
 sqlMap.commitTransaction();
} finally {
 sqlMap.endTransaction();
}

iBATIS will execute this batch in three sub batches – one for the first four insert statements,
another for the next two update statements, and another for the last three insert statements. Note
that even though the last three insert statements are the same as the first four, iBATIS will still
execute a different sub batch because the update statements were in between.

3. The executeBatch() method returns an int – the total number of records updated in the batch. If
there are sub batches, iBATIS will add the number of rows updated in each sub batch to the total.
Note that it is entirely legal for the JDBC driver to fail to return the number of records updated in a
batch - in which case the executeBatch() method will return 0 even though records have been
updated. The Oracle driver is a good example of a driver that behaves this way.

4. As of iBATIS versions 2.2.0 and higher, you can use a different method to execute batches -
executeBatchDetailed. This method functions the same as the regular executeBatch method
(requires an explicit transaction, uses sub batches, etc.), but it returns more detailed information
about the row counts. The executeBatchDetailed method returns a List of BatchResult objects –
one for each sub batch. Each BatchResult object contains information about the statement
associated with the sub batch as well as the int[] returned from the JDBC driver when the sub batch
was executed. If a java.sql.BatchUpdateException occurs, the method will throw BatchException
which contains information about the statement that caused the exception, as well as the List of
BatchResult objects from any previous successful sub batch.

Executing Statements via the SqlMapClient API

SqlMapClient provides an API to execute all mapped statements associated to it. These methods are as
follows:

public Object insert(String statementName, Object parameterObject)
throws SQLException

public Object insert(String statementName) throws SQLException

http://ibatis.apache.org by Clinton Begin

60

Developer Guide iBATIS Data Mapper 2.0

public int update(String statementName, Object parameterObject)
throws SQLException

public int update(String statementName) throws SQLException
public int delete(String statementName, Object parameterObject)

throws SQLException
public int delete(String statementName) throws SQLException
public Object queryForObject(String statementName,

Object parameterObject)
throws SQLException

public Object queryForObject(String statementName) throws SQLException
public Object queryForObject(String statementName,

Object parameterObject, Object resultObject)
throws SQLException

public List queryForList(String statementName, Object parameterObject)
throws SQLException

public List queryForList(String statementName) throws SQLException
public List queryForList(String statementName, Object parameterObject,

int skipResults, int maxResults)
throws SQLException

public List queryForList(String statementName, int skipResults, int maxResults)
throws SQLException

void queryWithRowHandler (String statementName,
Object parameterObject, RowHandler rowHandler)
throws SQLException

void queryWithRowHandler (String statementName, RowHandler rowHandler)
throws SQLException

public PaginatedList queryForPaginatedList(String statementName,
Object parameterObject, int pageSize)
throws SQLException

public PaginatedList queryForPaginatedList(String statementName,
int pageSize) throws SQLException

public Map queryForMap (String statementName, Object parameterObject,
String keyProperty)
throws SQLException

public Map queryForMap (String statementName, Object parameterObject,
String keyProperty, String valueProperty)
throws SQLException

public void flushDataCache()

public void flushDataCache(String cacheId)

In each case a the name of the Mapped Statement is passed in as the first parameter. This name
corresponds to the name attribute of a statement element described above (<insert>, <update>, <select>,
etc.). In addition, a parameter object can always be optionally passed in. A null parameter object can be
passed if no parameters are expected, otherwise it is required. As of iBATIS 2.2.0, many of the methods

http://ibatis.apache.org by Clinton Begin

61

Developer Guide iBATIS Data Mapper 2.0

also have overloads without the parameter object if no parameters are expected. For the most part the
similarities end there. The remaining differences in behavior are outlined below.

insert(), update(), delete(): These methods are specifically meant for update statements (a.k.a. non-query).
That said, it’s not impossible to execute an update statement using one of the query methods below,
however this is an odd semantic and obviously driver dependent. In the case of executeUpdate(), the
statement is simply executed and the number of rows effected is returned.

queryForObject(): There are two versions of executeQueryForObject(), one that returns a newly allocated
object, and another that uses a pre-allocated object that is passed in as a parameter. The latter is useful for
objects that are populated by more than one statement.

queryForList(): There are four versions of queryForList(). The first executes a query and returns all of the
results from that query. The second is like the first, but does not accept a parameter object. The third
allows for specifying a particular number of results to be skipped (i.e. a starting point) and also the
maximum number of records to return. This is valuable when dealing with extremely large data sets that
you do not want to return in their entirety. The fourth is like the third, but does not accept a parameter
object.

queryWithRowHandler(): This method allows you to process result sets row by row but using the result
object rather than the usual columns and rows. The method is passed the typical name and parameter
object, but it also takes a RowHandler. The row handler is an instance of a class that implements the
RowHandler interface. The RowHandler interface has only one method as follows:

 public void handleRow (Object valueObject);

This method will be called on the RowHandler for each row returned from the database. The valueObject
passed into the method is the resolved Java object for the current row. This is a very clean, simple and
scalable way to process results of a query. With this method you can respond to each object produced from
a query individually – rather than having iBATIS fill a list and return the list in whole. This would be an
efficient way to deal with huge result sets and could result in memory savings.

For an example usage of RowHandler, see the examples section below.

queryForPaginatedList(): This very useful method returns a list that can manage a subset of data that can
be navigated forward and back. This is commonly used in implementing user interfaces that only display a
subset of all of the available records returned from a query. An example familiar to most would be a web
search engine that finds 10,000 hits, but only displays 100 at a time. The PaginatedList interface includes
methods for navigating through pages (nextPage(), previousPage(), gotoPage()) and also checking the status
of the page (isFirstPage(), isMiddlePage(), isLastPage(), isNextPageAvailable(),
isPreviousPageAvailable(), getPageIndex(), getPageSize()). Although the total number of records available
is not accessible from the PaginatedList interface, this should be easily accomplished by simply executing a
second statement that counts the expected results. Too much overhead would be associated with the
PaginatedList otherwise.

queryForMap(): This method provides an alternative to loading a collection of results into a list. Instead it
loads the results into a map keyed by the parameter passed in as the keyProperty. For example, if loading a
collection of Employee objects, you might load them into a map keyed by the employeeNumber property.
The value of the map can either be the entire employee object, or another property from the employee
object as specified in the optional second parameter called valueProperty. For example, you might simply
want a map of employee names keyed by the employee number. Do not confuse this method with the
concept of using a Map type as a result object. This method can be used whether the result object is a
JavaBean or a Map (or a primitive wrapper, but that would likely be useless).

flushDataCache(): These methods provide a programmatic way of flushing the data caches. The method
without arguments will flush all data caches. The method taking a cacheId as argument will only flush the

http://ibatis.apache.org by Clinton Begin

62

Developer Guide iBATIS Data Mapper 2.0

named data cache. Note that for the latter you always need to specify the cacheId using namespaces (even if
you set useStatementNamespaces to false).

Example 1: Executing Update (insert, update, delete)

 sqlMap.startTransaction();
 Product product = new Product();
 product.setId (1);
 product.setDescription (“Shih Tzu”);
 Integer primKey = (Integer)sqlMap.insert (“insertProduct”, product);
 sqlMap.commitTransaction();

Example 2: Executing Query for Object (select)

 sqlMap.startTransaction();
 Integer key = new Integer (1);

 Product product = (Product)sqlMap.queryForObject (“getProduct”, key);
 sqlMap.commitTransaction();

Example 3: Executing Query for Object (select) With Preallocated Result Object

 sqlMap.startTransaction();
 Customer customer = new Customer();

 sqlMap.queryForObject(“getCust”, parameterObject, customer);
 sqlMap.queryForObject(“getAddr”, parameterObject, customer);
 sqlMap.commitTransaction();

Example 4: Executing Query for List (select)

 sqlMap.startTransaction();
 List list = sqlMap.queryForList (“getProductList”);
 sqlMap.commitTransaction();

Example 5: Auto-commit

 // When startTransaction is not called, the statements will
 // auto-commit. Calling commit/rollback is not needed.
 Integer primKey = (Integer)sqlMap.insert (“insertProduct”, product);

http://ibatis.apache.org by Clinton Begin

63

Developer Guide iBATIS Data Mapper 2.0

Example 6: Executing Query for List (select) With Result Boundaries

 sqlMap.startTransaction();
 List list = sqlMap.queryForList (“getProductList”, 0, 40);
 sqlMap.commitTransaction();

Example 7: Executing Query with a RowHandler (select)

 public class MyRowHandler implements RowHandler {
 private SqlMapClient sqlMap;
 public MyRowHandler(SqlMapClient sqlMap) {
 this.sqlMap = sqlMap;
 }

 public void handleRow (Object valueObject)

throws SQLException {
 Product product = (Product) valueObject;
 product.setQuantity (10000);
 sqlMap.update (“updateProduct”, product);
 }
 }
 sqlMap.startTransaction();
 RowHandler rowHandler = new MyRowHandler(sqlMap);
 sqlMap.queryWithRowHandler (“getProductList”, rowHandler);
 sqlMap.commitTransaction();

Example 8: Executing Query for Paginated List (select)

 PaginatedList list =
 sqlMap.queryForPaginatedList (“getProductList”, 10);

 list.nextPage();
 list.previousPage();

Example 9: Executing Query for Map

 sqlMap.startTransaction();
 Map map = sqlMap.queryForMap (“getProductList”, null, “productCode”);
 sqlMap.commitTransaction();
 Product p = (Product) map.get(“EST-93”);

http://ibatis.apache.org by Clinton Begin

64

Developer Guide iBATIS Data Mapper 2.0

Logging SqlMap Activity

The SqlMap framework provides logging information through the use of an internal log factory. The
internal log factory will delegate logging information to one of the following log implementations:

1. Jakarta Commons Logging (JCL – NOT Job Control Language!)
2. Log4J
3. JDK logging (JRE 1.4 or greater required)

The logging solution chosen is based on a runtime introspection by the internal iBATIS log factory. The
iBATIS log factory will use the first logging implementation it finds (implementations are searched in the
above order). If iBATIS finds none of the above implementations, then logging will be disabled.

Many environments ship JCL as a part of the application server classpath (good examples include Tomcat
and WebSphere). It is important to know that in such environments, iBATIS will use JCL as the logging
implementation. In an environment like WebSPhere this will mean that your Log4J configuration will be
ignored because WebSphere supplies its own proprietary implementation of JCL. This can be very
frustrating because it will appear that iBATIS is ignoring your Log4J configuration (in fact, iBATIS is
ignoring your Log4J configuration because iBATIS will use JCL in such environments).

If your application is running in an environment where JCL is included in the classpath but you would
rather use one of the other logging implementations you can select a different logging implementation by
calling one of the following methods (this is only available in iBATIS version 2.2.0 and later):

com.ibatis.common.logging.LogFactory.selectLog4JLogging();
com.ibatis.common.logging.LogFactory.selectJavaLogging();

If you choose to call one of these methods, you should do so before calling any other iBATIS method.
Also, these methods will only switch to the requested log implementation if that implementation is available
on the runtime classpath. For example, if you try to select Log4J logging and Log4J is not available at
runtime, then iBATIS will ignore the request to use Log4J and will use it's normal algorithm for discovering
logging implementations.

The specifics of Jakarta Commons Logging, Log4J and the JDK 1.4 Logging API are beyond the scope of
this document. However the example configuration below should get you started. If you would like to
know more about these frameworks, you can get more information from the following locations:

Jakarta Commons Logging
• http://jakarta.apache.org/commons/logging/index.html

Log4J
• http://jakarta.apache.org/log4j/docs/index.html

JDK 1.4 Logging API
• http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/

Log Configuration

iBATIS logs most of its activity using log classes that are not in the iBATIS packages. To see iBATIS
logging statements, you should enable logging on classes in the java.sql package – specifically the
following classes:

● java.sql.Connection
● java.sql.PreparedStatement
● java.sql.Resultset
● java.sql.Statement

http://ibatis.apache.org by Clinton Begin

65

Developer Guide iBATIS Data Mapper 2.0

Again, how you do this is dependent on the logging implementation in use. We'll show how to do it with
Log4J.

Configuring the logging services is simply a matter of including one or more extra configuration files (e.g.
log4j.properties) and sometimes a new JAR file (e.g. log4j.jar). The following example configuration will
configure full logging services using Log4J as a provider. There are 2 steps.

Step 1: Add the Log4J JAR file

Because we’re using Log4J, we’ll need to ensure its JAR file is available to our application. To use Log4J,
you need to add the JAR file to your application classpath. You can download Log4J from the URL above.
For web or enterprise applications you can add the log4j.jar to your WEB-INF/lib directory, or for a
standalone application you can simply add it to the JVM -classpath startup parameter.

Step 2: Configure Log4J

Configuring Log4J is simple – you create a file called log4j.properties and it looks like the following:

log4j.properties
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Global logging configuration
log4j.rootLogger=ERROR, stdout

SqlMap logging configuration...
#log4j.logger.com.ibatis=DEBUG
#log4j.logger.com.ibatis.common.jdbc.SimpleDataSource=DEBUG
#log4j.logger.com.ibatis.sqlmap.engine.cache.CacheModel=DEBUG
#log4j.logger.com.ibatis.sqlmap.engine.impl.SqlMapClientImpl=DEBUG
#log4j.logger.com.ibatis.sqlmap.engine.builder.xml.SqlMapParser=DEBUG
#log4j.logger.com.ibatis.common.util.StopWatch=DEBUG
#log4j.logger.java.sql.Connection=DEBUG
#log4j.logger.java.sql.Statement=DEBUG
#log4j.logger.java.sql.PreparedStatement=DEBUG
#log4j.logger.java.sql.ResultSet=DEBUG

Console output...
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] - %m%n

The above file is the minimal configuration that will cause logging to only report on errors. Line 2 of the
file is what is shown to be configuring Log4J to only report errors to the stdout appender. An appender is a
component that collects output (e.g. console, file, database etc.). To maximize the level of reporting, we
could change line 2 as follows:

 log4j.rootLogger=DEBUG, stdout

By changing line 2 as above, Log4J will now report on all logged events to the ‘stdout’ appender (console).
If you want to tune the logging at a finer level, you can configure each class that logs to the system using the
‘SqlMap logging configuration’ section of the file above (commented out in lines 5 through 14 above). So
if we wanted to log PreparedStatement activity (SQL statements) to the console at the DEBUG level, we
would simply change line 14 to the following (notice it’s not #commented out anymore):

 log4j.logger.java.sql.PreparedStatement=DEBUG

The remaining configuration in the log4j.properties file is used to configure the appenders, which is beyond
the scope of this document. However, you can find more information at the Log4J website (URL above).
Or, you could simply play around with it to see what effects the different configuration options have.

http://ibatis.apache.org by Clinton Begin

66

Developer Guide iBATIS Data Mapper 2.0

The One Page JavaBeans Course
The Data Mapper framework requires a firm understanding of JavaBeans. Luckily, there’s not much to the
JavaBeans API as far as it relates to Data Mapper. So here’s a quick introduction to JavaBeans if you
haven’t been exposed to them before.

What is a JavaBean? A JavaBean is a class that adheres to a strict convention for naming methods that
access or mutates the state of the class. Another way of saying this is that a JavaBean follows certain
conventions for “getting” and “setting” properties. The properties of a JavaBean are defined by its method
definitions (not by its fields). Methods that start with the word “set” are write-able properties (e.g.
setEngine), whereas methods that start with “get” are readable properties (e.g. getEngine). For boolean
properties the readable property method can also start with the word “is” (e.g. isEngineRunning). Set
methods should not define a return type (i.e it should be void), and should take only a single parameter of
the appropriate type for the property (e.g. String). Get methods should return the appropriate type (e.g.
String) and should take no parameters. Although it’s usually not enforced, the parameter type of the set
method and the return type of the get method should be the same. JavaBeans should also implement the
Serializable interface. JavaBeans also support other features (events etc.), and must have a no-argument
constructor, but these are unimportant in the context of Data Mapper and usually equally unimportant in the
context of a web application.

That said, here is an example of a JavaBean:

public class Product implements Serializable {

 private String id;
 private String description;

 public String getId() {
 return id;
 }
 public void setId(String id) {
 this.id = id;
 }

 public String getDescription() {
 return description;
 }
 public void setDescription(String description) {
 this.description = description;
 }
}

Note! Don’t mix data types of the get and set properties for a given property. For example, for a numeric
“account” property, be sure to use the same numeric type for both the getter and setter, as follows:

 public void setAccount (int acct) {….}
 public int getAccount () {….}

Notice both use the “int” type. Returning a “long” from the get method, for example, would cause
problems.

Note! Similarly, make sure you only have one method named getXxxx() and setXxxx(). Be judicious with
polymorphic methods. You’re better off naming them more specifically anyway.

Note! An alternate getter syntax exists for boolean type properties. The get methods may be named in the
format of isXxxxx(). Be sure that you either have an “is” method or a “get” method, not both!

Congratulations! You’ve passed the course!

http://ibatis.apache.org by Clinton Begin

67

Developer Guide iBATIS Data Mapper 2.0

Okay, Two Pages

Side Bar: Object Graph Navigation (JavaBeans Properties, Maps, Lists)

Throughout this document you may have seen objects accessed through a special syntax that might be
familiar to anyone who has used Struts or any other JavaBeans compatible framework. The Data Mapper
framework allows object graphs to be navigated via JavaBeans properties, Maps (key/value) and Lists.
Consider the following navigation (includes a List, a Map and a JavaBean):

Employee emp = getSomeEmployeeFromSomewhere();
((Address) ((Map)emp.getDepartmentList().get(3)).get (“address”)).getCity();

This property of the employee object could be navigated in an SqlMapClient property as follows (given
the employee object as above):

“departmentList[3].address.city”

Important: this syntax only applies to properties used with iBATIS' support for dynamic SQL elements.
It will not work with properties in <result> or <parameter> mappings.

http://ibatis.apache.org by Clinton Begin

68

Developer Guide iBATIS Data Mapper 2.0

Resources (com.ibatis.common.resources.*)
The Resources class provides methods that make it very easy to load resources from the classpath. Dealing
with ClassLoaders can be challenging, especially in an application server/container. The Resources class
attempts to simplify dealing with this sometimes tedious task.

Common uses of the resources file are:

• Loading the SQL Map configuration file (e.g. sqlMap-config.xml) from the classpath.
• Loading various *.properties files from the classpath.
• Etc.

There are many different ways to load a resource, including:

• As a Reader: For simple read-only text data.
• As an InputStream: For simple read-only binary data.
• As a File: For read/write binary or text files.
• As a Properties File: For read-only configuration properties files.

The various methods of the Resources class that load resources using any one of the above schemes are as
follows (in order):

 Reader getResourceAsReader(String resource);
 InputStream getResourceAsStream(String resource);
 File getResourceAsFile(String resource);
 Properties getResourceAsProperties(String resource);

In each case the ClassLoader used to load the resources will be the same as that which loaded the Resources
class, or when that fails, the system class loader will be used. In the event you are in an environment where
the ClassLoader is troublesome (e.g. within certain app servers), you can specify the ClassLoader to use
(e.g. use the ClassLoader from one of your own application classes). Each of the above methods has a
sister method that takes a ClassLoader as the first parameter. They are:

 Reader getResourceAsReader (ClassLoader classLoader, String resource);
 InputStream getResourceAsStream (ClassLoader classLoader, String resource);
 File getResourceAsFile (ClassLoader classLoader, String resource);
 Properties getResourceAsProperties (ClassLoader classLoader, String resource);

The resource named by the resource parameter should be the full package name plus the full file/resource
name. For example, if you have a resource on your classpath such as
‘com.domain.mypackage.MyPropertiesFile.properties’, you could load as a Properties file using the
Resources class using the following code (notice that the resource does not start with a slash “/”):

String resource = “com/domain/mypackage/MyPropertiesFile.properties”;
Properties props = Resources.getResourceAsProperties (resource);

Similarly you could load your SqlMap configuration file from the classpath as a Reader. Say it’s in a
simple properties package on our classpath (properties.sqlMap-config.xml):

String resource = “properties/sqlMap-config.xml”;
Reader reader = Resources.getResourceAsReader(resource);
SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMap(reader);

Internationalization of Resources

Note: the information in this section is current as of iBATIS version 2.3 and higher.

http://ibatis.apache.org by Clinton Begin

69

Developer Guide iBATIS Data Mapper 2.0

In iBATIS, the main area of concern with internationalization is in the XML configuration files. If the files
have an unusual encoding, or if the system default encoding does not match the coding of the XML files,
then errors can sometimes occur. iBATIS offers two different solutions to this issue.

Internationalization with Character Readers

When using a Reader, iBATIS will use the Java class InputStreamReader to encode the files. By default,
this class uses the system's default encoding and ignores the actual encoding of the file. In some
environments, the system's default encoding does not play well with the unicode encoding favored by XML
files. If you encounter encoding issues when parsing iBATIS XML files with a Reader as input, you can
change the default encoding to match the encoding of the XML files. For example:

String resource = “properties/sqlMap-config.xml”;
Resources.setCharset(Charset.forName('UTF-8”)); // change the default encoding
Reader reader = Resources.getResourceAsReader(resource);
SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMap(reader);

The “setCharset” method will change the encoding used for all future calls to “getResourceAsReader”. If
you want to revert back to the system default, simply call “setCharset(null)”.

Internationalization with Byte Input Streams

If you use a byte InputStream to read the XML configuration files, then often times the parser will be able
to automatically determine the file encoding. This is often times the best choice to use of the two methods.
An example of using this method is as follows:

String resource = “properties/sqlMap-config.xml”;
InputStream inputStream = Resources.getResourceAsStream(resource);
SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMap(inputStream);

This method relies on the parser's native support for character encoding. If you experience errors with this
method, see you parser's documentation for information on how to override the default scheme.

http://ibatis.apache.org by Clinton Begin

70

Developer Guide iBATIS Data Mapper 2.0

SimpleDataSource (com.ibatis.common.jdbc.*)
The SimpleDataSource class is a simple implementation of a JDBC 2.0 compliant DataSource. It supports
a convenient set of connection pooling features and is completely synchronous (no spawned threads) which
makes it a very lightweight and portable connection pooling solution. SimpleDataSource is used exactly
like any other JDBC DataSource implementation, and is documented as part of the JDBC Standard
Extensions API, which can be found here: http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/

Note!: The JDBC 2.0 API is now included as a standard part of J2SE 1.4.x

Note!: SimpleDataSource is quite convenient, efficient and effective. However, for large enterprise or
mission critical applications, it is recommended that you use an enterprise level DataSource implementation
(such as those that come with App Servers and commercial O/R mapping tools).

The constructor of SimpleDataSource requires a Properties parameter that takes a number of configuration
properties. The following table names and describes the properties. Only the “JDBC.” properties are
required.

Property Name Required Default Description
JDBC.Driver Yes n/a The usual JDBC driver class name.
JDBC.ConnectionURL Yes n/a The usual JDBC connection URL.
JDBC.Username Yes n/a The username to log into the database.
JDBC.Password Yes n/a The password to log into the database.
JDBC.DefaultAutoCommit No driver

dependent
The default autocommit setting for all
connections created by the pool.

Pool.MaximumActiveConnections No 10 Maximum number of connections that can
be open at any given time.

Pool.MaximumIdleConnections No 5 The number of idle connections that will be
stored in the pool.

Pool.MaximumCheckoutTime No 20000 The maximum length of time (milliseconds)
that a connection can be “checked out”
before it becomes a candidate for forced
collection.

Pool.TimeToWait No 20000 If a client is forced to wait for a connection
(because they are all in use), this is the
maximum length of time in (milliseconds)
that the thread will wait before making a
repeat attempt to acquire a connection. It is
entirely possible that within this time a
connection will be returned to the pool and
notify this thread. Hence, the thread may
not have to wait as long as this property
specifies (it is simply the maximum).

Pool.PingQuery No n/a The ping query will be run against the
database to test the connection. In an
environment where connections are not
reliable, it is useful to use a ping query to
guarantee that the pool will always return a
good connection. However, this can have a
significant impact on performance. Take
care in configuring the ping query and be
sure to do a lot of testing.

http://ibatis.apache.org by Clinton Begin

71

Developer Guide iBATIS Data Mapper 2.0

SimpleDataSource (continued…)

Pool.PingEnabled No false Enable or disable ping query. For most
applications a ping query will not be
necessary.

Pool.PingConnectionsOlderThan No 0 Connections that are older than the value
(milliseconds) of this property will be tested
using the ping query. This is useful if your
database environment commonly drops
connections after a period of time (e.g. 12
hours).

Pool.PingConnectionsNotUsedFor No 0 Connections that have been inactive for
longer than the value (milliseconds) of this
property will be tested using the ping query.
This is useful if your database environment
commonly drops connections after they have
been inactive for a period of time (e.g. after
12 hours of inactivity).

Driver.* No n/a Many JDBC drivers support additional
features configured by sending extra
properties. To send such properties to your
JDBC driver, you can specify them by
prefixing them with “Driver.” and then the
name of the property. For example, if your
driver has a property called
“compressionEnabled”, then you can set it
in the SimpleDataSource properties by
setting “Driver.compressionEnabled=true”.

Note: These properties also work within the
sqlMap-config.xml file.

Example: Using SimpleDataSource

// properties usually loaded from a file
DataSource dataSource = new SimpleDataSource(props);
Connection conn = dataSource.getConnection();
// ... database queries and updates
conn.commit();
// connections retrieved from SimpleDataSource will return to the pool when closed
conn.close();

http://ibatis.apache.org by Clinton Begin

72

Developer Guide iBATIS Data Mapper 2.0

CLINTON BEGIN MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

© 2004 Clinton Begin. All rights reserved. iBATIS and iBATIS logos are trademarks of Clinton Begin.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

http://ibatis.apache.org by Clinton Begin

73

